People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lupu, Nicoleta
National Institute of Research and Development for Technical Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Cobalt Ferrite Nanoparticles Capped with Perchloric Acid for Life-Science Application
- 2022Effect of the Preparation Conditions on the Magnetic Coercivity of CoPt Alloy Nanowirescitations
- 2019Synthesis, characterisation and hydrogen sorption properties of mechanically alloyed Mg(Ni1-xMnx)2citations
Places of action
Organizations | Location | People |
---|
article
Effect of the Preparation Conditions on the Magnetic Coercivity of CoPt Alloy Nanowires
Abstract
<jats:p>In this paper, 3 µm length and 200 nm diameter CoPt nanowire arrays (NWs) with different Co contents were prepared by electrodeposition at a controlled potential from an aqueous hexachloroplatinate solution. The synthesis occurred at two different solution pH values (2.5 and 5.5) in an electrochemical bath free of additives, as well as with saccharin as an organic additive. A complete morphological, compositional, structural and magnetic characterization of the as-prepared nanowires has been carried out. The results show that, by controlling the electrodeposition conditions, the Co content of the alloy can be tuned from 16% to 92%. The crystalline structure of the as-deposited compounds can also be controlled, with the obtained data showing that the face-centered cubic (fcc) crystalline structure changes into a hexagonal close-packed (hcp) structure when saccharin is used as an organic additive during the electrodeposition. The changes in the alloy’s composition and crystalline structure strongly influence the magnetic properties of the NW’s arrays.</jats:p>