People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borges, João Paulo Miranda Ribeiro
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Bioactive Hydroxyapatite Aerogels with Piezoelectric Particlescitations
- 2024Experimental study of Double-Elliptic-Ring-based thermomechanical metamaterials’ behaviourcitations
- 2023Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillerscitations
- 2023Thermal, Structural, Morphological and Electrical Characterization of Cerium-Containing 45S5 for Metal Implant Coatingscitations
- 2023Extensive Investigation on the Effect of Niobium Insertion on the Physical and Biological Properties of 45S5 Bioactive Glass for Dental Implantcitations
- 2023Hydroxyapatite-Barium Titanate Biocoatings Using Room Temperature Coblastingcitations
- 2023Bioactive Glass Modified with Zirconium Incorporation for Dental Implant Applicationscitations
- 2022Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticlescitations
- 2020Conductive electrospun Polyaniline/Polyvinylpyrrolidone nanofibers: Electrical and morphological characterization of new yarns for electronic textilescitations
- 2019Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineeringcitations
- 2019Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineeringcitations
- 2019Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaborationcitations
- 2019Development of polymeric anepectic meshes: Auxetic metamaterials with negative thermal expansioncitations
- 2019Polymer blending or fiber blending: a comparative study using chitosan and poly(ε-caprolactone) electrospun fiberscitations
- 2018Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineeringcitations
- 2017Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatincitations
- 2017Tailoring the morphology of hydroxyapatite particles using a simple solvothermal routecitations
- 2017Hybrid polysaccharide-based systems for biomedical applicationscitations
- 2016Thermal and magnetic properties of chitosan-iron oxide nanoparticlescitations
- 2016Natural Nanofibres for Composite Applicationscitations
- 2016A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineeringcitations
- 2015Osteogenisis enhancement of hydroxyapatite based materials by electrical polarization
- 2015Chitin-Based Nanocomposites: Biomedical Applicationscitations
- 2015Electrospun mats of biodegradable chitosan-based polyurethane urea
- 2015Antimicrobial electrospun silver-, copper-and zinc-doped polyvinylpyrrolidone nanofibers
- 2014Cellulose‐Based Liquid Crystalline Composite Systemscitations
- 2014Effects of surfactants on the magnetic properties of iron oxide colloidscitations
- 2014Electrical polarization of a chitosan-hydroxyapatite composite
- 2013Enhancing the Response of Chemocapacitors with Electrospun Nanofiber Filmscitations
- 2011All-Cellulosic Based Composites
- 2006Mechanical characterization of dense hydroxyapatite blockscitations
- 2001Cellulose-based composite filmscitations
Places of action
Organizations | Location | People |
---|
article
Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticles
Abstract
This work was financed by national funds from FCT—Fundação para a Ciência e a Tecnologia, I.P., in the scope of the projects LA/P/0037/2020, Publisher Copyright: © 2022 by the authors. ; Damage to bone tissue is a common health issue that tends to increase in severity with age and other underlying conditions. To take advantage of the piezoelectric effect on bone remodulation, piezoelectric materials can be used to fill patients bone defects. Polyvinylidene fluoride (PVDF) and barium titanate (BaTiO3) are both well-known polymeric and ceramic biomaterials, respectively, as well as piezoelectric at room temperature. To mimic the extracellular matrix, PVDF membranes were produced by electrospinning onto a rotating drum to promote the alignment of fibers and micro- and nano-sized tetragonal BaTiO3 particles were embedded into these membranes to try to enhance the piezoelectric response and, therefore, bioactivity. After defining the best deposition parameters to produce pure PVDF membranes, the same parameters were carried over for the embedded membranes and both were characterized, revealing that the proposed method for obtaining β-phase PVDF (the polymer phase with highest piezoelectric coefficient) through electrospinning is viable, producing fibers with coherent diameters and alignment. The presence of barium titanate conferred bioactivity to the membranes and caused a decrease in fibers’ diameter and in superficial charge density. ; publishersversion ; published