People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fusiek, Grzegorz
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Development of Fiber Bragg grating strain amplification sensor for use in nuclear power plants
- 2023Design and implementation of a passive autoranging circuit for hybrid FBG-PZT photonic current transducercitations
- 2022Construction and evaluation of an optical medium voltage transducer module aimed at a 132 kV optical voltage sensor for WAMPAC systemscitations
- 2020Photonic voltage transducer with lightning impulse protection for distributed monitoring of MV networkscitations
- 2018Design and demonstration of a low-cost small-scale fatigue testing machine for multi-purpose testing of materials, sensors and structurescitations
- 2017Comparison of epoxy and braze-welded attachment methods for FBG strain gauges
- 2017Optical voltage sensor for MV networkscitations
- 2016First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensorscitations
- 2012Towards the development of a downhole optical voltage sensor for monitoring electrical submersible pumpscitations
- 2011Induction heating assisted optical fiber bonding and sealing techniquecitations
- 2011Preliminary evaluation of a high-pressure, high-temperature downhole optical sensorcitations
Places of action
Organizations | Location | People |
---|
article
Design and demonstration of a low-cost small-scale fatigue testing machine for multi-purpose testing of materials, sensors and structures
Abstract
Mechanical fatigue testing of materials, prototype structures or sensors is often required prior to the deployment of these components in industrial applications. Such fatigue tests often requires the continuous long-term use of an appropriate loading machine, which can incur significant costs when outsourcing and can limit customization options. In this work, design and implementation of a low-cost small-scale machine capable of customizable fatigue experimentation on structural beams is presented. The design is thoroughly modeled using FEM software and compared to a sample experiment, demonstrating long-term endurance of the machine. This approach to fatigue testing is then evaluated against the typical cost of outsourcing in the UK, providing evidence that for long-term testing of at least 373 hours, a custom machine is the preferred<br/>option.