People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alfreider, Markus
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Stabilization of mechanical strength in a nanocrystalline CoCrNi concentrated alloy by nitrogen alloying
- 2024Micro-Mechanical Fracture Investigations on Grain Size Tailored Tungsten-Copper Nanocompositescitations
- 2024Automatic and time-resolved determination of fracture characteristics from in situ experimentscitations
- 2023Deformation and failure behavior of nanocrystalline WCucitations
- 2023Magnetic Properties of a High-Pressure Torsion Deformed Co-Zr Alloycitations
- 2023Revealing the nano-scale mechanisms of the limited non-basal plasticity in magnesium
- 2023Nanoscale printed tunable specimen geometry enables high-throughput miniaturized fracture testingcitations
- 2022In situ micromechanical analysis of a nano-crystalline W-Cu compositecitations
- 2022Interface mediated deformation and fracture of an elastic–plastic bimaterial system resolved by in situ transmission scanning electron microscopycitations
- 2022The influence of chemistry on the interface toughness in a WTi-Cu systemcitations
- 2021Prospects of Using Small Scale Testing to Examine Different Deformation Mechanisms in Nanoscale Single Crystals—A Case Study in Mgcitations
- 2021Extracting information from noisy data: strain mapping during dynamic in situ SEM experimentscitations
- 2020Correlation between fracture characteristics and valence electron concentration of sputtered Hf-C-N based thin filmscitations
- 2020In situ fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloycitations
- 2020Probing defect relaxation in ultra-fine grained Ta using micromechanical spectroscopycitations
- 2019Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phasecitations
- 2019Rate limiting deformation mechanisms of bcc metals in confined volumescitations
- 2018In-situ elastic-plastic fracture mechanics on the microscale by means of continuous dynamical testingcitations
- 2018In-situ TEM observation of {101¯2} twin-dominated deformation of Mg pillarscitations
- 2017The influence of deformation and proton-irradiation on the mechanical behaviour in nano-crystalline stainless steels
- 2016Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Compositecitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Composite
Abstract
The importance of lightweight materials such as titanium and magnesium in various technical applications, for example aerospace, medical implants and lightweight construction is well appreciated. The present study is an attempt to combine and improve the mechanical properties of these two materials by forming an ultra-fine grained composite. The material, with a composition of 75 vol% (88.4 wt%) Ti and 25 vol% (11.4 wt%) Mg , was synthesized by powder compression and subsequently deformed by high-pressure torsion. Using focused ion beam machining, miniaturised compression samples were prepared and tested in-situ in a scanning electron microscope to gain insights into local deformation behaviour and mechanical properties of the nanocomposite. Results show outstanding yield strength of around 1250 MPa, which is roughly 200 to 500 MPa higher than literature reports of similar materials. The failure mode of the samples is accounted for by cracking along the phase boundaries.