People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stoica, Mihai
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Modification of structural, mechanical, corrosion and biocompatibility properties of Ti 40 Zr 10 Cu 36 Pd 14 metallic glass by minor Ga and Sn additionscitations
- 2021Characterization, mechanical properties and dimensional accuracy of a Zr-based bulk metallic glass manufactured via laser powder-bed fusioncitations
- 2021Characterization, mechanical properties and dimensional accuracy of a Zr-based bulk metallic glass manufactured via laser powder-bed fusioncitations
- 2021Additive manufacturing of a precious bulk metallic glasscitations
- 2021Green Brand Positioning for Organic Food: A Content Analysis of Corporate Websitescitations
- 2020Ultra-high strength Co-Ta-B bulk metallic glasses: glass formation, thermal stability and crystallizationcitations
- 2018In situ synchrotron X-ray diffraction characterization of corrosion products of a Ti-based metallic glass for implant applicationscitations
- 2017Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shapingcitations
- 2017Micro-patterning by thermoplastic forming of Ni-free Ti-based bulk metallic glassescitations
- 2016High pressure die casting of Fe-based metallic glasscitations
- 2016New Cu-free ti-based composites with residual amorphous matrix
- 2016Towards the better: Intrinsic property amelioration in bulk metallic glassescitations
- 2016Chemical ordering in $Pd_{81}Ge_{19}$ metallic glass studied by reverse Monte-Carlo modelling of XRD, ND and EXAFS experimental datacitations
- 2016Structure-property relationships in nanoporous metallic glassescitations
- 2016Influence of ejection temperature on structure and glass transition behavior for Zr-based rapidly quenched disordered alloyscitations
- 2016Effect of alloying elements in melt spun Mg-alloys for hydrogen storagecitations
- 2015Influence of Al on glass forming ability and nanocrystallization behavior of cast-iron based bulk amorphous alloycitations
- 2015Structure evolution of soft magnetic (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) bulk glassy alloys
- 2014Thermal and soft magnetic properties of $Co_{40}Fe_{22}Ta_{8}B_{30}$ glassy particles: In-situ X-ray diffraction and magnetometry studiescitations
- 2014Influence of ball milling on atomic structure and magnetic properties of $Co_{40}Fe_{22}Ta_{8}B_{30}$ glassy alloycitations
- 2014FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffractioncitations
- 2011Non-isothermal kinetic analysis of the crystallization of metallic glasses using the master curve methodcitations
- 2011Structural and mechanical characterization of Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass
- 2005Casting and characterization of Fe-(Cr,Mo,Ga)-(P,C,B) soft magnetic bulk metallic glasses
Places of action
Organizations | Location | People |
---|
article
Non-isothermal kinetic analysis of the crystallization of metallic glasses using the master curve method
Abstract
The non-isothermal transformation rate curves of metallic glasses are analyzed with the Master Curve method grounded in the Kolmogorov-Johnson-Mehl-Avrami theory. The method is applied to the study of two different metallic glasses determining the activation energy of the transformation and the experimental kinetic function that is analyzed using Avrami kinetics. The analysis of the crystallization of Cu47Ti33Zr11Ni8Si1 metallic glassy powders gives Ea = 3.8 eV, in good agreement with the calculation by other methods, and a transformation initiated by an accelerating nucleation and diffusion-controlled growth. The other studied alloy is a Nanoperm-type Fe77Nb7B15Cu1 metallic glass with a primary crystallization of bcc-Fe. An activation energy of Ea = 5.7 eV is obtained from the Master Curve analysis. It is shown that the use of Avrami kinetics is not able to explain the crystallization mechanisms in this alloy giving an Avrami exponent of n = 1. ; publishedVersion