People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arivarasu, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particlescitations
- 2024Hot Corrosion Studies on HVOF Coated Alloy A-286 in Molten Salt Environment
- 2020Improvement in hot corrosion resistance of dissimilar alloy 825 and AISI 321 CO2-laser weldment by HVOF coating in aggressive salt environment at 900°Ccitations
Places of action
Organizations | Location | People |
---|
article
Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles
Abstract
<jats:p>This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of short-pulsed laser cladding. The chemical composition, microstructure, and micromechanical and tribological characteristics of the coatings were systematically investigated via optical and scanning electron microscopy, Raman spectroscopy, and mechanical and tribological tests. The average thicknesses and compositional transition zones of the coatings were 600 ± 20 μm and 150 ± 20 μm, respectively. Raman spectroscopy revealed that both coatings are primarily composed of a single FCC γ-phase (γ-FeNiCr). The FeNiCr + 3 wt.% TiC coating exhibited an additional TiC phase dispersed within the γ-FeNiCr matrix. In contrast, the FeNiCr + 3 wt.% NbC coating displayed a more homogeneous distribution of finely dispersed NbC phase throughout the composite, leading to enhanced mechanical behavior. Micromechanical characterization showed that the FeNiCr + 3 wt.% NbC coating possessed higher average microhardness (3.8 GPa) and elastic modulus (180 GPa) compared to the FeNiCr + 3 wt.% TiC coating, which had values of ~3.2 GPa and ~156 GPa, respectively. Both coatings significantly exceeded the AISI 1040 steel substrate in tribological performance. The FeNiCr + 3 wt.% TiC and FeNiCr + 3 wt.% NbC coatings exhibited substantial reductions in both weight loss (37% and 41%, respectively) and wear rate (33% and 42%, respectively) compared to the substrate material. These findings indicate that more finely dispersed NbC particles are better suited for hardening laser-cladded equiatomic FeNiCr-NbC coatings, making them advanced candidates for industrial applications.</jats:p>