Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kaczmarczyk, Grzegorz Piotr

  • Google
  • 2
  • 5
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Analysis of Wall Thickness and Absorption Characteristics of Ammonium Nitrate(V) from Various Sources1citations
  • 2021Application of Fluidized Bed Furnance Bottom Ash in Civil Engineering – A Review5citations

Places of action

Chart of shared publication
Ruggiero-Mikołajczyk, Małgorzata
1 / 2 shared
Machowski, Grzegorz
1 / 1 shared
Kuterasiński, Łukasz
1 / 3 shared
Stopkowicz, Agnieszka
1 / 1 shared
Biessikirski, Andrzej
1 / 2 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Ruggiero-Mikołajczyk, Małgorzata
  • Machowski, Grzegorz
  • Kuterasiński, Łukasz
  • Stopkowicz, Agnieszka
  • Biessikirski, Andrzej
OrganizationsLocationPeople

article

Analysis of Wall Thickness and Absorption Characteristics of Ammonium Nitrate(V) from Various Sources

  • Ruggiero-Mikołajczyk, Małgorzata
  • Kaczmarczyk, Grzegorz Piotr
  • Machowski, Grzegorz
  • Kuterasiński, Łukasz
  • Stopkowicz, Agnieszka
  • Biessikirski, Andrzej
Abstract

<jats:p>This study investigates the wall thickness and specific surface area (SBET) of ammonium nitrate(V) samples of varying provenance. The research focuses on both fertilizer-grade ammonium nitrate(V) and three porous prill samples obtained from different manufacturers. The samples were analyzed using tomography scanning and two distinct porosimetry methods. The wall thickness analysis revealed that fertilizer-grade ammonium nitrate(V) possesses thicker walls, ranging from 0.05 to 0.40 mm, compared to porous prill-type ammonium nitrate(V), which predominantly exhibited wall thicknesses between 0.05 and 0.025 mm, with occasional thicker regions up to 0.040 mm. These variations in wall thickness are likely attributable to differences in manufacturing processes and prilling conditions specific to the ammonium nitrate(V) porous prill-type samples. The specific surface area (SBET), derived from nitrogen adsorption measurements, indicated that the samples exhibited surface areas ranging from 0.011 to 0.466 m2·g, suggesting that these samples do not exhibit particularly high absorption capacities. However, the SBET values obtained from the mercury intrusion method suggested significantly higher absorption capacities, falling within the range of 4.87–18.29 m2·g. These findings suggest that mercury porosimetry may provide a more accurate assessment of the porosity and absorption potential of ammonium nitrate(V) samples.</jats:p>

Topics
  • porous
  • surface
  • tomography
  • Nitrogen
  • porosity
  • porosimetry
  • Mercury