People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Charitidis, Costas A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Growth of Carbon Nanofibers and Carbon Nanotubes by Chemical Vapour Deposition on Half-Heusler Alloys
- 2023Inductive Thermal Effect on Thermoplastic Nanocomposites with Magnetic Nanoparticles for Induced-Healing, Bonding and Debonding On-Demand Applicationscitations
- 2023Mesoscopic Modeling and Experimental Validation of Thermal and Mechanical Properties of Polypropylene Nanocomposites Reinforced By Graphene-Based Fillerscitations
- 2022Microscopic testing of carbon fiber laminates with shape memory epoxy interlayercitations
- 2022Occupational Safety Analysis for COVID-Instigated Repurposed Manufacturing Lines: Use of Nanomaterials in Injection Mouldingcitations
- 2021The Effect of Superabsorbent Polymers on the Microstructure and Self-Healing Properties of Cementitious-Based Composite Materialscitations
- 2021Sustainability analysis of aluminium hot forming and quenching technology for lightweight vehicles manufacturingcitations
- 2021Synthesis and Characterization of SiO2@CNTs Microparticles: Evaluation of Microwave-Induced Heat Productioncitations
- 2020Comparative Physical–Mechanical Properties Assessment of Tailored Surface-Treated Carbon Fibrescitations
- 2018Assessing the integrity of CFRPs through nanomechanical mapping: the effect of CF surface modificationcitations
Places of action
Organizations | Location | People |
---|
article
Growth of Carbon Nanofibers and Carbon Nanotubes by Chemical Vapour Deposition on Half-Heusler Alloys
Abstract
The possibility of directly growing carbon nanofibers (CNFs) and carbon nanotubes (CNTs) on half-Heusler alloys by Chemical Vapour Deposition (CVD) is investigated for the first time, without using additional catalysts, since the half-Heusler alloys per se may function as catalytic substrates, according to the findings of the current study. As a carbon source, acetylene is used in the temperature range of 700–750 °C. The n-type half-Heusler compound |(Zr<sub>0.4</sub>Ti<sub>0.6</sub>)<sub>0.33</sub>Ni<sub>0.33</sub>(Sn<sub>0.98</sub>Sb<sub>0.02</sub>)<sub>0.33</sub> is utilized as the catalytic substrate. At first, a computational model is developed for the CVD reactor, aiming to optimize the experimental process design and setup. The experimental process conditions are simulated to investigate the reactive species concentrations within the reactor chamber and the activation of certain reactions. SEM analysis confirms the growth of CNFs with diameters ranging from 450 nm to 1 μm. Raman spectroscopy implies that the formed carbon structures resemble CNFs rather than CNTs, and that amorphous carbon also co-exists in the deposited samples. From the characterization results, it may be concluded that a short reaction time and a low acetylene flow rate lead to the formation of a uniform CNF coating on the surface of half-Heusler alloys. The purpose of depositing carbon nanostructures onto half-Heusler alloys is to improve the current transfer, generated from these thermoelectric compounds, by forming a conductive coating on their surface.