Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kubaško, Jakub

  • Google
  • 1
  • 8
  • 2

Technical University of Košice

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Zirconium-Modified Medium-Entropy Alloy (TiVNb)85Cr15 for Hydrogen Storage2citations

Places of action

Chart of shared publication
Varcholová, Dagmara
1 / 1 shared
Fujda, Martin
1 / 2 shared
Möllmer, Jens
1 / 2 shared
Saksl, Karel
1 / 15 shared
Ballokova, Beata
1 / 1 shared
Matvija, Miloš
1 / 5 shared
Lange, Marcus
1 / 2 shared
Podobová, Mária
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Varcholová, Dagmara
  • Fujda, Martin
  • Möllmer, Jens
  • Saksl, Karel
  • Ballokova, Beata
  • Matvija, Miloš
  • Lange, Marcus
  • Podobová, Mária
OrganizationsLocationPeople

article

Zirconium-Modified Medium-Entropy Alloy (TiVNb)85Cr15 for Hydrogen Storage

  • Varcholová, Dagmara
  • Fujda, Martin
  • Möllmer, Jens
  • Saksl, Karel
  • Kubaško, Jakub
  • Ballokova, Beata
  • Matvija, Miloš
  • Lange, Marcus
  • Podobová, Mária
Abstract

<jats:p>In this study, we investigate the effect of small amounts of zirconium alloying the medium-entropy alloy (TiVNb)85Cr15, a promising material for hydrogen storage. Alloys with 1, 4, and 7 at.% of Zr were prepared by arc melting and found to be multiphase, comprising at least three phases, indicating that Zr addition does not stabilize a single-phase solid solution. The dominant BCC phase (HEA1) is the primary hydrogen absorber, while the minor phases HEA2 and HEA3 play a crucial role in hydrogen absorption/desorption. Among the studied alloys, Zr4 (TiVNb)81Cr15Zr4 shows the highest hydrogen storage capacity, ease of activation, and reversibly retrievable hydrogen. This alloy can absorb hydrogen at room temperature without additional processing, with a reversible capacity of up to 0.74 wt.%, corresponding to hydrogen-to-metal ratio H/M = 0.46. The study emphasizes the significant role of minor elemental additions in alloy properties, stressing the importance of tailored compositions for hydrogen storage applications. It suggests a direction for further research in metal hydride alloys for effective and safe hydrogen storage.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • zirconium
  • Hydrogen
  • activation