People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ciftci, Jakub
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Microstructure and Corrosion of Mg-Based Composites Produced from Custom-Made Powders of AZ31 and Ti6Al4V via Pulse Plasma Sinteringcitations
- 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ compositescitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2022Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusioncitations
- 2022Corrosion behavior of fine-grained Mg-7.5Li-3Al-1Zn fabricated by extrusion with a forward-backward rotating die (KoBo)citations
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2021Analysis of direct metal laser sintering ‒ DMLS and heat treatment influence on the Inconel 713C nickel alloy structurecitations
- 2020Microstructure and Mechanical Properties of Austenitic 316L Steel Samples Obtained by Selective Laser Melting
Places of action
Organizations | Location | People |
---|
article
Microstructure and Corrosion of Mg-Based Composites Produced from Custom-Made Powders of AZ31 and Ti6Al4V via Pulse Plasma Sintering
Abstract
Magnesium (Mg) and its alloys offer promise for aerospace, railway, and 3D technology applications, yet their inherent limitations, including inadequate strength, pose challenges. Magnesium matrix composites, particularly with metallic reinforcements like titanium (Ti) and its alloys, present a viable solution. Therefore, this study investigates the impact of Ti6Al4V reinforcement on AZ31 magnesium alloy composites produced using pulse plasma sintering (PPS). Results show enhanced microhardness of the materials due to improved densification and microstructural refinement. However, Ti6Al4V addition decreased corrosion resistance, leading to strong microgalvanic corrosion and substrate dissolution. Understanding these effects is crucial for designing Mg-based materials for industries like petrochemicals, where degradation-resistant materials are vital for high-pressure environments. This research provides valuable insights into developing Mg-Ti6Al4V composites with tailored properties for diverse industrial applications, highlighting the importance of considering corrosion behavior in material design. Further investigation is warranted to establish predictive correlations between Ti6Al4V content and corrosion rate for optimizing composite performance.