People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salmi, Mika
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Metal Laser-Based Powder Bed Fusion Process Development Using Optical Tomographycitations
- 20244D printing of shape memory polymer with continuous carbon fibercitations
- 20243D-printed sensor electric circuits using atomic layer depositioncitations
- 20234D printing of shape memory polymer with continuous carbon fibercitations
- 2023Influence of feature size and shape on corrosion of 316L lattice structures fabricated by laser powder bed fusioncitations
- 2023NiTiCu alloy from elemental and alloyed powders using vat photopolymerization additive manufacturingcitations
- 2022Comparing additive manufacturing processes for distributed manufacturingcitations
- 2022Microstructure and Properties of Additively Manufactured AlCoCr0.75Cu0.5FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decompositioncitations
- 2022Towards the additive manufacturing of Ni-Mn-Ga complex devices with magnetic field induced straincitations
- 2021Additive manufacturing in nuclear power plants (AM-NPP)
- 2021Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Deposition : First Steps for Integrated Electric Circuitrycitations
- 2021Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Deposition:First Steps for Integrated Electric Circuitrycitations
- 2021Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) techniquecitations
- 2021Cross-testing laser powder bed fusion production machines and powders: Variability in mechanical properties of heat-treated 316L stainless steelcitations
- 2021Cross-testing laser powder bed fusion production machines and powderscitations
- 2021Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Depositioncitations
- 2021Mechanical properties and fracture characterization of additive manufacturing polyamide 12 after accelerated weatheringcitations
- 2021Cross-testing laser powder bed fusion production machines and powders:Variability in mechanical properties of heat-treated 316L stainless steelcitations
- 2021Additive Manufacturing of Resected Oral and Oropharyngeal Tissuecitations
- 2021Anisotropic plastic behavior of additively manufactured PH1 steelcitations
- 2021Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Deposition: First Steps for Integrated Electric Circuitrycitations
- 2020Additive manufacturing of miniature marine structures for crashworthiness verification: Scaling technique and experimental testscitations
- 2020Surface modification of additively manufactured 18% nickel maraging steel by ultrasonic vibration-assisted ball burnishingcitations
- 2020Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFFcitations
- 2019Effect of process parameters on non-modulated Ni-Mn-Ga alloy manufactured using powder bed fusioncitations
- 2019Effect of process parameters on non-modulated Ni-Mn-Ga alloy manufactured using powder bed fusioncitations
- 2018Towards space-grade 3D-printed, ALD-coated small satellite propulsion components for fluidicscitations
- 2015The Effect of Local Heating by Laser Irradiation for Aluminum, Deep Drawing Steel and Copper Sheets in Incremental Sheet Formingcitations
Places of action
Organizations | Location | People |
---|
article
Metal Laser-Based Powder Bed Fusion Process Development Using Optical Tomography
Abstract
In this study, a set of 316 L stainless steel test specimens was additively manufactured by laser-based Powder Bed Fusion. The process parameters were varied for each specimen in terms of laser scan speed and laser power. The objective was to use a narrow band of parameters well inside the process window, demonstrating detailed parameter engineering for specialized additive manufacturing cases. The process variation was monitored using Optical Tomography to capture light emissions from the layer surfaces. Process emission values were stored in a statistical form. Micrographs were prepared and analyzed for defects using optical microscopy and image manipulation. The results of two data sources were compared to find correlations between lack of fusion, porosity, and layer-based energy emissions. A data comparison of Optical Tomography data and micrograph analyses shows that Optical Tomography can partially be used independently to develop new process parameters. The data show that the number of critical defects increases when the average Optical Tomography grey value passes a certain threshold. This finding can contribute to accelerating manufacturing parameter development and help meet the industrial need for agile component-specific parameter development. ; Peer reviewed