People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Röbenack, Klaus
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Manufacture and deformation angle control of a two-direction soft actuator integrated with SMAs
- 2024Manufacturing, development and control of a two-way 3D printed soft actuator actuated with SMAscitations
- 2024Closed-loop control of a 3D printed soft actuator with integrated flex sensors and SMA wirescitations
- 2024Investigation and Validation of a Shape Memory Alloy Material Model Using Interactive Fibre Rubber Compositescitations
- 2022Integrated Temperature and Position Sensors in a Shape-Memory Driven Soft Actuator for Closed-Loop Controlcitations
- 2018Development and testing of controlled adaptive fiber-reinforced elastomer composites.citations
- 2018Development and testing of controlled adaptive fiber-reinforced elastomer compositescitations
Places of action
Organizations | Location | People |
---|
article
Manufacture and deformation angle control of a two-direction soft actuator integrated with SMAs
Abstract
In this contribution, the development of a 3D-printed soft actuator integrated with shape memory alloys (SMA) wires capable of bending in two directions is presented. This work discusses the design, manufacturing, modeling, simulation, and feedback control of the actuator. The SMA wires are encased in Polytetrafluoroethylene (PTFE) tubes and then integrated into the 3D-printed matrix made of thermoplastic polyurethane (TPU). To measure and control the deformation angle of the soft actuator, a computer vision system was implemented. Based on the experimental results, a mathematical model was developed using the system identification method and simulated to describe the dynamics of the actuator, contributing to the design of a controller. However, achieving precise control of the deformation angle in systems actuated by SMA wires is challenging due to their inherent nonlinearities and hysteretic behavior. A proportional-integral (PI) controller was designed to address this challenge, and its effectiveness was validated through real experiments.