People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moral Vico, Javier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Synthesis of Cobalt-Based Nanoparticles as Catalysts for Methanol Synthesis from CO2 Hydrogenationcitations
- 2024Synthesis of Cobalt-Based Nanoparticles as Catalysts for Methanol Synthesis from CO2 Hydrogenationcitations
- 2024Cu/ZnO/CeO2 Supported on MOF-5 as a Novel Catalyst for the CO2 Hydrogenation to Methanolcitations
- 2024Cu/ZnO/CeO2 Supported on MOF-5 as a Novel Catalyst for the CO2 Hydrogenation to Methanol : A Mechanistic Study on the Effect of CeO2 and MOF-5 on Active Sites
- 2024Green Supercritical CO2 Synthesis of [Copper Clusters@FeBTC]@rGO Catalyst for Highly Efficient Hydrogenation of CO2 to Methanolcitations
- 2023Magnetite-based nanoparticles and nanocomposites for recovery of overloaded anaerobic digesterscitations
- 2022Role of Graphene Oxide Aerogel Support on the CuZnO Catalytic Activity: Enhancing Methanol Selectivity in the Hydrogenation Reaction of CO2citations
- 2022Cobalt Nanocomposites as Catalysts for Carbon Dioxide Conversion to Methanol â€
- 2022Cobalt Nanocomposites as Catalysts for Carbon Dioxide Conversion to Methanol †
Places of action
Organizations | Location | People |
---|
article
Synthesis of Cobalt-Based Nanoparticles as Catalysts for Methanol Synthesis from CO2 Hydrogenation
Abstract
<jats:p>The increasing emission of carbon dioxide into the atmosphere has urged the scientific community to investigate alternatives to alleviate such emissions, being that they are the principal contributor to the greenhouse gas effect. One major alternative is carbon capture and utilization (CCU) toward the production of value-added chemicals using diverse technologies. This work aims at the study of the catalytic potential of different cobalt-derived nanoparticles for methanol synthesis from carbon dioxide hydrogenation. Thanks to its abundance and cost efficacy, cobalt can serve as an economical catalyst compared to noble metal-based catalysts. In this work, we present a systematic comparison among different cobalt and cobalt oxide nanocomposites in terms of their efficiency as catalysts for carbon dioxide hydrogenation to methanol as well as how different supports, zeolites, MnO2, and CeO2, can enhance their catalytic capacity. The oxygen vacancies in the cerium oxide act as carbon dioxide adsorption and activation sites, which facilitates a higher methanol production yield.</jats:p>