Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ait Bassou, Abderrazzak

  • Google
  • 1
  • 4
  • 4

University of Trás-os-Montes and Alto Douro

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Growth and Structural Characterization of h-LuMnO3 Thin Films Deposited by Direct MOCVD4citations

Places of action

Chart of shared publication
Fernandes, José Ramiro Afonso
1 / 1 shared
Fernandes, Lisete
1 / 5 shared
Tavares, Pedro
1 / 2 shared
Figueiras, Fábio Gabriel
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Fernandes, José Ramiro Afonso
  • Fernandes, Lisete
  • Tavares, Pedro
  • Figueiras, Fábio Gabriel
OrganizationsLocationPeople

article

Growth and Structural Characterization of h-LuMnO3 Thin Films Deposited by Direct MOCVD

  • Fernandes, José Ramiro Afonso
  • Fernandes, Lisete
  • Ait Bassou, Abderrazzak
  • Tavares, Pedro
  • Figueiras, Fábio Gabriel
Abstract

<jats:p>In this work, we investigated the MOCVD conditions to synthesize thin films with the hexagonal P63cm h-LuMnO3 phase as a potential low-band gap ferroelectric material. The main parameters investigated were the ratio of organometallic starting materials, substrate temperature, and annealing effect. Two different substrates were used in the study: fused silica (SiO2) glass and platinized silicon (Pt(100)). In order to investigate the thermodynamic stability and quality of the developed phases, a detailed analysis of the crystal structure, microstructure, morphology, and roughness of the films was performed by X-ray diffractometer, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), Raman spectroscopy, and piezoelectric force microscopy (PFM). Molar compositions in the film within 0.93 &lt; |Lu|/|Mn| &lt; 1.33 were found to be suitable for obtaining a single-phase h-LuMnO3. The best films were obtained by depositions at 700 °C, followed by thermal treatments at 800 °C for long periods of up to 12 h. These films exhibited a highly crystalline hexagonal single phase with a relatively narrow direct band gap, around 1.5 eV, which is within the expected values for the h-LuMnO3 system.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • phase
  • scanning electron microscopy
  • thin film
  • glass
  • glass
  • Silicon
  • annealing
  • Energy-dispersive X-ray spectroscopy
  • Raman spectroscopy
  • spectrometry
  • organometallic