People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Królikowski, Marcin A.
West Pomeranian University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023Comparison of Dental Zirconium Oxide Ceramics Produced Using Additive and Removal Technology for Prosthodontics and Restorative Dentistry—Strength and Surface Tests: An In Vitro Studycitations
- 2020Evaluation of Surface Topography after Face Turning of CoCr Alloys Fabricated by Casting and Selective Laser Meltingcitations
Places of action
Organizations | Location | People |
---|
article
Comparison of Dental Zirconium Oxide Ceramics Produced Using Additive and Removal Technology for Prosthodontics and Restorative Dentistry—Strength and Surface Tests: An In Vitro Study
Abstract
<jats:p>Background: The aim of this in vitro study was to determine the mechanical and functional properties of zirconium oxide ceramics made using 3D printing technology and ceramics produced using conventional dental milling machines. Methods: Forty zirconia samples were prepared for this study: the control group consisted of 20 samples made using milling technology, and the test group consisted of 20 samples made using 3D printing technology. Their surface parameters were measured, and then their mechanical parameters were checked and compared. Density, hardness, flexural strength and compressive strength were tested by performing appropriate in vitro tests. After the strength tests, a comparative analysis of the geometric structure of the surfaces of both materials was performed again. Student’s t-test was used to evaluate the results (p < 0.01). Results: Both ceramics show comparable values of mechanical parameters, and the differences are not statistically significant. The geometric structure of the sample surfaces looks very similar. Only minor changes in the structure near the crack were observed in the AM group. Conclusion: Ceramics made using additive technology have similar mechanical and surface parameters to milled zirconium oxide, which is one of the arguments for the introduction of this material into clinical practice. This in vitro study has shown that this ceramic can compete with zirconium made using CAD/CAM (Computer-Aided Design and Computer-Aided Manufacturing) methods.</jats:p>