Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kisilewicz, Michal

  • Google
  • 1
  • 5
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Aging Process of Biocomposites with the PLA Matrix Modified with Different Types of Cellulose7citations

Places of action

Chart of shared publication
Kosowska, Karolina
1 / 4 shared
Mielan, Bartosz
1 / 1 shared
Suchorowiec, Katarzyna
1 / 1 shared
Gralewski, Jacek
1 / 2 shared
Szatkowski, Piotr
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kosowska, Karolina
  • Mielan, Bartosz
  • Suchorowiec, Katarzyna
  • Gralewski, Jacek
  • Szatkowski, Piotr
OrganizationsLocationPeople

article

Aging Process of Biocomposites with the PLA Matrix Modified with Different Types of Cellulose

  • Kosowska, Karolina
  • Mielan, Bartosz
  • Suchorowiec, Katarzyna
  • Gralewski, Jacek
  • Kisilewicz, Michal
  • Szatkowski, Piotr
Abstract

<jats:p>In the modern world, many products are disposable or have a very short lifespan, while at the same time, those products are made from materials that will remain in the environment in the form of waste for hundreds or even thousands of years. It is a serious problem; non-biodegradable polymer wastes are part of environmental pollution and generate microplastics, which accumulate in the organisms of living beings. One of the proposed solutions is biodegradable polymers and their composites. In our work, three types of polylactide-based composites with plant-derived fillers: microcellulose powder, short flax fibers, and wood flour at 2 wt.% were prepared. Poly(lactic acid) (PLA)-based biocomposite properties were characterized in terms of mechanical and surface properties together with microscopic analysis and Fourier-transform infrared spectroscopy (FTIR), before and after a UV (ultraviolet)-light-aging process to determine the effects of each cellulose-based additive on the UV-induced degradation process. This research shows that the addition of a cellulose additive can improve the properties of the material in terms of the UV-aging process, but the form of the chosen cellulose form plays a crucial role in this case. The testing of physicochemical properties demonstrated that not only can mechanical properties be improved, but also the time of degradation under UV light exposure can be controlled by the proper selection of the reinforcing phase and the parameters of the extrusion and injection molding process. The obtained results turned out to be very interesting, not only in terms of the cost reduction of the biocomposites themselves, as mainly the waste from the wood industry was used as a low-cost filler, but also that the additive delays the aging process occurring during UV light exposure. Even a small, 2 wt.% addition of some of the tested forms of cellulose delayed surface degradation, which is one of the most important factors affecting the biodegradation process.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • phase
  • extrusion
  • composite
  • aging
  • wood
  • injection molding
  • cellulose
  • aging
  • infrared spectroscopy
  • mechanical and surface