People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Myszka, Dawid
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Abrasive Wear Resistance of Ultrafine Ausferritic Ductile Iron Intended for the Manufacture of Gears for Mining Machinerycitations
- 2023Supported by 2D and 3D Imaging Methods Investigation of the Influence of Fiber Orientation on the Mechanical Properties of the Composites Reinforced with Fibers in a Polymer Matrixcitations
- 2023Highly Accurate Structural Analysis of Austempered Ductile Iron Using EBSD Techniquecitations
- 2023Numerical and Experimental Analysis of Strength Loss of 1.2709 Maraging Steel Produced by Selective Laser Melting (SLM) under Thermo-Mechanical Fatigue Conditionscitations
- 2022The Microstructure of Cast Steel Subjected to Austempering and B-Q&P Heat Treatmentcitations
- 2021Influence of Tungsten on the Structure and Properties of Ductile Iron Containing 0.8% Cucitations
- 2020Influence of rare earths metals (Rem) on the structure and selected properties of grey cast iron
- 2019Transformation kinetics of austempered dductile iron: Dilatometric experiments and model parameter evaluationcitations
- 2018High Strain Rate Dynamic Deformation of ADI
- 2018High Strain Rate Dynamic Deformation of ADIcitations
- 2018Comparison of Some Properties of Selected Co-Cr Alloys Used in Dental Prosthetics
- 2018Determination of susceptibility of cast iron with a predetermined chemical composition to shape properties and microstructure through bainitic transformation
- 2018Influence of pre-heat treatment on mechanical properties of austempered ductile cast iron
- 2018Evaluation of Mechanical Properties of Al7050-cenosphere Metal Matrix Composites
- 2018The effect of addition of germanium to the surface phenomena in silver alloys
- 2017The comparative study of the microstructure and phase composition of nanoausferritic ductile iron alloy using SEM, TEM, magnetometer and X-ray diffraction methodscitations
- 2014Preliminary evaluation of the applicability of F, V and aesignals in diagnosis of ADI machining processcitations
- 2014Influence of heat treatment conditions on microstructure and mechanical properties of austempered ductile iron after dynamic deformation test
- 2012Mikrostructure transformations in austempered ductile iron during deformation by dynamic hardness test
- 2012New possibilities of shaping the surface properties in austempered ductile iron castings
- 2011Advanced metrology of surface defects measurement for aluminum die casting
- 2009Detonation sprayed coatings Al 2O 3-TiO 2 and WC/Co on adi investment castings
- 2007Austenite-Martensite transformation in austempered ductile iron
Places of action
Organizations | Location | People |
---|
article
Numerical and Experimental Analysis of Strength Loss of 1.2709 Maraging Steel Produced by Selective Laser Melting (SLM) under Thermo-Mechanical Fatigue Conditions
Abstract
<jats:p>The result of the development of additive manufacturing (AM) methods is the increasing use of the selective laser melting (SLM) method as a technique for producing tooling for injection moulds and die casting pressure moulds from maraging steel powders. The mould components are subjected to varying thermo-mechanical loads during these operations. This paper presents a numerical model that is used to predict the fatigue life of a material that is loaded with a time-varying temperature field according to the classic and modified Coffin test. Using a computational model, the temperature changes in the resistance-heated specimen and the stress and strain fields that are caused by this phenomenon were determined. Using three different multiaxial fatigue criteria, the fatigue life of SLM steel was determined. Numerical calculations were verified using experimental thermal fatigue tests on 1.2709 SLM steel that was aged at 490 °C as well as via metallographic tests. The numerical model was used to predict the durability of the same steel aged at 540 °C. The effect of specimen clamping conditions on the fatigue life of SLM steel was determined numerically. The value of the decrease in strength of SLM steel as a result of the increasing number of cycles of temperature changes was determined experimentally; a great influence of ageing temperature on fatigue life was found. Changes in the structure of steel occurring during cyclic changes in temperature are presented.</jats:p>