Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alvarez, Miguel Angel López

  • Google
  • 2
  • 8
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023DyMnO3: Synthesis, Characterization and Evaluation of Its Photocatalytic Activity in the Visible Spectrumcitations
  • 2019Novel UV Sensing and Photocatalytic Properties of DyCoO320citations

Places of action

Chart of shared publication
Ortega-Gudiño, Pedro
1 / 2 shared
Silva Jara, Jorge Manuel
1 / 2 shared
Ceja-Andrade, Israel
1 / 1 shared
Barrera, Arturo
1 / 1 shared
León, Jesús Alonso Guerrero-De
1 / 1 shared
Lopez, Carlos
1 / 2 shared
Silva Galindo, Jazmín Guadalupe
1 / 2 shared
Casillas-García, José Eduardo
1 / 1 shared
Chart of publication period
2023
2019

Co-Authors (by relevance)

  • Ortega-Gudiño, Pedro
  • Silva Jara, Jorge Manuel
  • Ceja-Andrade, Israel
  • Barrera, Arturo
  • León, Jesús Alonso Guerrero-De
  • Lopez, Carlos
  • Silva Galindo, Jazmín Guadalupe
  • Casillas-García, José Eduardo
OrganizationsLocationPeople

article

DyMnO3: Synthesis, Characterization and Evaluation of Its Photocatalytic Activity in the Visible Spectrum

  • Ortega-Gudiño, Pedro
  • Silva Jara, Jorge Manuel
  • Ceja-Andrade, Israel
  • Barrera, Arturo
  • León, Jesús Alonso Guerrero-De
  • Lopez, Carlos
  • Silva Galindo, Jazmín Guadalupe
  • Alvarez, Miguel Angel López
  • Casillas-García, José Eduardo
Abstract

<jats:p>DyMnO3 is a p-type semiconductor oxide with two crystal systems, orthorhombic and hexagonal. This material highlights its ferroelectric and ferromagnetic properties, which have been the subject of numerous studies. Nevertheless, its photocatalytic activity has been less explored. In this work, the photocatalytic activity of DyMnO3 is evaluated through the photodegradation of MG dye. For the synthesis of this oxide, a novel and effective method was used: polymer-decomposition. The synthesized powders contain an orthorhombic phase, with a range of absorbances from 300 to 500 nm and a band gap energy of 2.4 eV. It is also highlighted that, when using this synthesis method, some of the main diffraction lines related to the orthorhombic phase appear at 100 °C. Regarding its photocatalytic activity, it was evaluated under visible light (λ = 405 nm), reaching a photodegradation of approximately 88% in a period of 30 min. Photocurrent tests reveal a charge carrier separation (e−,h+) at a 405 nm wavelength. The main reactive oxygen species (ROS) involved in the photodegradation process were radicals, OH•, and photo-holes (h+). These results stand out because it is the first time that the photodegradation capability of this oxide in the visible spectrum has been evaluated.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • Oxygen
  • reactive
  • laser emission spectroscopy
  • decomposition
  • p-type semiconductor