Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lypchanskyi, Oleksandr

  • Google
  • 6
  • 31
  • 30

Chemnitz University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach6citations
  • 2024Microstructural analysis of titanium alloys based on high-temperature phase reconstruction2citations
  • 2024A Characterization of the Impact Toughness of Hot-rolled HSLA Steelcitations
  • 2023A comprehensive study on hot deformation behaviour of the metastable β titanium alloy prepared by blended elemental powder metallurgy approachcitations
  • 2023Microstructure and Mechanical Properties of In Situ Synthesized Metastable β Titanium Alloy Composite from Low-Cost Elemental Powders3citations
  • 2021The analysis of flow behavior of Ti-6Al-2Sn-4Zr-6Mo alloy based on the processing maps19citations

Places of action

Chart of shared publication
Kubis, Michal
1 / 1 shared
Wojtaszek, Marek
4 / 6 shared
Kubiś, M.
1 / 1 shared
Prahl, U.
1 / 10 shared
Gude, Mike
4 / 775 shared
Łukaszek-Sołek, A.
2 / 3 shared
Prahl, Ulrich
3 / 34 shared
Zyguła, K.
2 / 3 shared
Korpała, G.
2 / 2 shared
Przybyszewski, B.
1 / 6 shared
Zygula, Krystian
1 / 1 shared
Stanik, Rafał
2 / 5 shared
Łukaszek-Sołek, Aneta
2 / 4 shared
Korpala, Grzegorz
1 / 3 shared
Lypchanskyi, O.
1 / 2 shared
Przybyszewski, Bartlomiej
1 / 8 shared
Wojtaszek, M.
1 / 5 shared
Stanik, R.
1 / 10 shared
Wynne, Bradley
1 / 4 shared
Muszka, Krzysztof
2 / 9 shared
Kawalko, Jakub
1 / 4 shared
Śleboda, Tomasz
2 / 4 shared
Pańcikiewicz, Krzysztof
1 / 3 shared
Hamryszczak, Tomasz
1 / 1 shared
Kubiś, Michał
1 / 13 shared
Przybyszewski, Bartłomiej
1 / 2 shared
Mrotzek, Tino
1 / 9 shared
Zientara, Dariusz
1 / 2 shared
Zyguła, Krystian
1 / 2 shared
Śleboda, T.
1 / 1 shared
Stanik, Rafal
1 / 10 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Kubis, Michal
  • Wojtaszek, Marek
  • Kubiś, M.
  • Prahl, U.
  • Gude, Mike
  • Łukaszek-Sołek, A.
  • Prahl, Ulrich
  • Zyguła, K.
  • Korpała, G.
  • Przybyszewski, B.
  • Zygula, Krystian
  • Stanik, Rafał
  • Łukaszek-Sołek, Aneta
  • Korpala, Grzegorz
  • Lypchanskyi, O.
  • Przybyszewski, Bartlomiej
  • Wojtaszek, M.
  • Stanik, R.
  • Wynne, Bradley
  • Muszka, Krzysztof
  • Kawalko, Jakub
  • Śleboda, Tomasz
  • Pańcikiewicz, Krzysztof
  • Hamryszczak, Tomasz
  • Kubiś, Michał
  • Przybyszewski, Bartłomiej
  • Mrotzek, Tino
  • Zientara, Dariusz
  • Zyguła, Krystian
  • Śleboda, T.
  • Stanik, Rafal
OrganizationsLocationPeople

article

Microstructure and Mechanical Properties of In Situ Synthesized Metastable β Titanium Alloy Composite from Low-Cost Elemental Powders

  • Lypchanskyi, Oleksandr
  • Mrotzek, Tino
  • Prahl, Ulrich
  • Zientara, Dariusz
  • Zyguła, Krystian
  • Wojtaszek, Marek
  • Gude, Mike
Abstract

<jats:p>The titanium matrix composite was produced through a hot compaction process at 1250 °C using the mixture of elemental powders with chemical composition of Ti-5Al-5Mo-5V-3Cr and 2 wt.% addition of boron carbide. The phase analysis via X-ray diffraction method was performed to confirm the occurrence of an in situ reaction between boron carbide and titanium. Then, the wide-ranging microstructural analysis was performed using optical microscopy as well as scanning electron microscopy along with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. Based on this investigation, it was possible to describe the diffusion behavior during hot compaction and possible precipitation capabilities of TiC and TiB phases. Tensile and compression tests were conducted to determine the strength properties. The investigated composite has an ultimate tensile strength of about 910 ± 13 MPa with elongation of 10.9 ± 1.9% and compressive strength of 1744 ± 20 MPa with deformation of 10.5 ± 0.2%. Observation of the fracture surface allowed us to determine the dominant failure mechanism, which was crack propagation from the reaction layer surrounding remaining boron carbide particle, through the titanium alloy matrix. The study summarizes the process of producing an in situ titanium matrix composite from elemental powders and B4C additives and emphasizes the importance of element diffusion and reaction layer formation, which contributes to the strength properties of the material.</jats:p>

Topics
  • microstructure
  • surface
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • crack
  • strength
  • carbide
  • composite
  • chemical composition
  • compression test
  • precipitation
  • Boron
  • titanium
  • titanium alloy
  • Energy-dispersive X-ray spectroscopy
  • tensile strength
  • electron backscatter diffraction
  • optical microscopy