People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Godzierz, Marcin
Centre of Polymer and Carbon Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Structural and Thermal Characterization of Bluepha® Biopolyesters: Insights into Molecular Architecture and Potential Applicationscitations
- 2024Polymer Composites with Carbon Fillers Based on Coal Pitch and Petroleum Pitch Cokes: Structure, Electrical, Thermal, and Mechanical Propertiescitations
- 2024The Influence of Graphite Filler on the Self-Lubricating Properties of Epoxy Compositescitations
- 2024Engineering of Polystyrene/BiFeO<sub>3</sub> 0–3 Thin Film Nanocomposites for Mechanical Energy Harvesting
- 2024Polymer Nanocomposites Based on Nanosized Substituted Ferrites (NiZn)1−xMnxFe2O4 on the Surface of Carbon Nanotubes for Effective Interaction with High-Frequency EM Radiationcitations
- 2023Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shellscitations
- 2023Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shells
- 2023Pyroresistive Properties of Composites Based on HDPE and Carbon Fillerscitations
- 2023Development of Polyhydroxybutyrate-Based Packaging Films and Methods to Their Ultrasonic Weldingcitations
- 2023Bismuth sulfoiodide (BiSI) nanorods: synthesis, characterization, and photodetector applicationcitations
- 2022Polylactide/Carbon Black Segregated Composites for 3D Printing of Conductive Productscitations
Places of action
Organizations | Location | People |
---|
article
Development of Polyhydroxybutyrate-Based Packaging Films and Methods to Their Ultrasonic Welding
Abstract
<jats:p>This study developed a technical task associated with the formation of welded joints based on biodegradable polymers and their subsequent physicochemical characterization. The primary objective was to establish the effect of the welding process and modification of natural poly(3-hydroxybutyrate) (PHB) with N,N-dibutylundecenoylamide (DBUA) as a plasticizing agent on the structure and properties of PHB-based biopolymer materials as well as the process and structure of welded joints formation using ultrasonic welding technique. The weldability of biodegradable layers based on PHB and PHB/DBUA mixture was ultrasonically welded and optimized using a standard Branson press-type installation. The effect of the DBUA plasticizer and welding process on the structure of PHB-based biodegradable material was investigated using scanning electron microscopy, X-ray diffraction, FT-IR spectroscopy, differential scanning calorimetry, and thermomechanical analysis. The results confirmed that the DBUA acted as an effective plasticizer of PHB, contributing to lower crystallinity of the PHB/DBUA mixture (63%) in relation to the crystallinity degree of pure PHB film (69%). Ultrasonic welding resulted in an additional increase (approximately 8.5%) in the degree of crystallinity in the PHB/DBUA in relation to the initial PHB/DBUA mixture. The significant shift toward lower temperatures of the crystallization and melting peaks of PHB modified with DBUA were observed using DSC concerning pure PHB. The melt crystallization process of PHB was affected by welding treatment, and a shift toward higher temperature was observed compared with the unwelded PHB/DBUA sample. The butt-welded joints of biodegradable PHB/DBUA materials made using the ultrasonic method tested for tensile strength have damaged the area immediately outside the joining surface.</jats:p>