People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ari-Gur, Pnina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Effect of Melt-Spinning Parameters on the Structure and Properties of Ni55.5Mn18.8Ga24Si1.7 Heusler Alloy Ribbonscitations
- 2015Neutron Diffraction Study of the Martensitic Transformation and Chemical Order in Heusler Alloy Ni1.91Mn1.29Ga0.8
- 2015Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOecitations
- 2014Thermomagnetic and magnetocaloric properties of metamagnetic Ni-Mn-In-Co Heusler alloy in magnetic fields up to 140 kOecitations
Places of action
Organizations | Location | People |
---|
article
Effect of Melt-Spinning Parameters on the Structure and Properties of Ni55.5Mn18.8Ga24Si1.7 Heusler Alloy Ribbons
Abstract
<jats:p>Ni–Mn-based Heusler alloys are known to demonstrate magnetic shape memory and giant magnetocaloric effect (MCE). These effects depend on the phases, crystallographic and magnetic phase transitions, and the crystallographic texture characteristics. These structural characteristics, in turn, are a function of the processing parameters. In the current work, Ni55.5Mn18.8Ga24Si1.7 Heusler alloy was processed by melt-spinning under a helium atmosphere. This process results in a fine microstructure. The ribbon that was produced with a narrower nozzle width, faster wheel speed, and higher cast temperature, indicating a faster cooling rate, had double the magnetic entropy change close to room temperature. However, the other ribbon demonstrated a large entropy change over a broader temperature range, extending its usability. The effect of the melt-spinning process parameters on the developing microstructure, crystallographic structure and texture, transformation temperatures, and the magnetic entropy change were studied to explain the difference in magnetocaloric behavior.</jats:p>