People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lehtonen, Matti
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Investigation of soil resistivity impacts on the electrodes of grounding system subjected to lightning strikescitations
- 2023A Novel Polyester Varnish Nanocomposites for Electrical Machines with Improved Thermal and Dielectric Properties Using Functionalized TiO2 Nanoparticlescitations
- 2023Condition Assessment of Natural Ester–Mineral Oil Mixture Due to Transformer Retrofilling via Sensing Dielectric Propertiescitations
- 2020PVC nanocomposites for cable insulation with enhanced dielectric properties, partial discharge resistance and mechanical performancecitations
- 2020PVC nanocomposites for cable insulation with enhanced dielectric properties, partial discharge resistance and mechanical performancecitations
- 2020Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cablescitations
- 2020Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cablescitations
- 2019Development of industrial scale PVC nanocomposites with comprehensive enhancement in dielectric propertiescitations
- 2018Multiple enhancement of PVC cable insulation using functionalized SiO2 nanoparticles based nanocompositescitations
- 2018Experimental measurements of partial discharge activity within LDPE/TiO2 nanocompositescitations
- 2018Impact of Nanoparticles Functionalization on Partial Discharge Activity within PVC/SiO2 Nanocompositescitations
- 2017Enhancement of dielectric and mechanical properties of Polyvinyl Chloride nanocomposites using functionalized TiO2 nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
A Novel Polyester Varnish Nanocomposites for Electrical Machines with Improved Thermal and Dielectric Properties Using Functionalized TiO2 Nanoparticles
Abstract
Funding Information: This paper is based upon work supported by the Science, Technology, and Innovation Funding Authority (STIFA), Egypt, under a grant (31292). Publisher Copyright: © 2023 by the authors. ; Recently, there has been a growing interest in polymer insulating materials that incorporate nanoscale inorganic additives, as they have shown significantly improved dielectric, thermal, and mechanical properties, making them highly suitable for application in high-voltage insulating materials for electrical machines. This study aims to improve the dielectric and thermal properties of a commercial polyester varnish by incorporating different concentrations of titanium dioxide nanoparticles (TiO2) with proper surface functionalization. Permafil 9637 dipping varnish is the varnish used for this investigation, and vinyl silane is the coupling agent used in the surface functionalization of TiO2 nanoparticles. First, nanoparticles are characterized through Fourier transform infrared spectroscopy to validate the success of their surface functionalization. Then, varnish nanocomposites are characterized through field emission scanning electron microscopy to validate the dispersion and morphology of nanoparticles within the varnish matrix. Following characterization, varnish nanocomposites are evaluated for thermal and dielectric properties. Regarding thermal properties, the thermal conductivity of the prepared nanocomposites is assessed. Regarding dielectric properties, both permittivity and dielectric losses are evaluated over a wide frequency range, starting from 20 Hz up to 2 MHz. Moreover, the AC breakdown voltage is measured for varnish nanocomposites, and the obtained data are incorporated into a finite element method to obtain the dielectric breakdown strength. Finally, the physical mechanisms behind the obtained results are discussed, considering the role of nanoparticle loading and surface functionalization. ; Peer reviewed