Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Szynkowska-Jóźwik, Małgorzata Iwona

  • Google
  • 2
  • 8
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023The Shear Bond Strength of Resin-Based Luting Cement to Zirconia Ceramics after Different Surface Treatments11citations
  • 2022Can TPO as Photoinitiator Replace “Golden Mean” Camphorquinone and Tertiary Amines in Dental Composites? Testing Experimental Composites Containing Different Concentration of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide 7citations

Places of action

Chart of shared publication
Bociong, Kinga
2 / 13 shared
Stopa, Wioleta
1 / 1 shared
Grzegorz Sokołowski, Grzegorz Sokołowski
1 / 3 shared
Sokołowski, Jerzy
2 / 22 shared
Szczesio-Wlodarczyk, Agata
1 / 6 shared
Kopacz, Karolina
2 / 8 shared
Gozdek, Tomasz
1 / 4 shared
Kowalska, Andrea
1 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Bociong, Kinga
  • Stopa, Wioleta
  • Grzegorz Sokołowski, Grzegorz Sokołowski
  • Sokołowski, Jerzy
  • Szczesio-Wlodarczyk, Agata
  • Kopacz, Karolina
  • Gozdek, Tomasz
  • Kowalska, Andrea
OrganizationsLocationPeople

article

The Shear Bond Strength of Resin-Based Luting Cement to Zirconia Ceramics after Different Surface Treatments

  • Bociong, Kinga
  • Szynkowska-Jóźwik, Małgorzata Iwona
  • Stopa, Wioleta
  • Grzegorz Sokołowski, Grzegorz Sokołowski
  • Sokołowski, Jerzy
  • Szczesio-Wlodarczyk, Agata
  • Kopacz, Karolina
Abstract

Due to its unique properties, zirconia is increasingly being used in dentistry, but surface preparation for bonding is difficult because of its polycrystalline structure. This study aimed to determine the effect of a new etching technique (Zircos-E) on Ceramill Zi (Amann Girrbach). The effect of etching and the use of primers (Monobond Plus and MKZ Primer) on the bond strength of zirconia with resin cement (NX3) was assessed. Shear bond strength was evaluated after storage in water for 24 h and after thermal aging (5000 thermocycling at 5 °C/55 °C). A scanning electron microscope (Hitachi S-4700) was used to evaluate the surface structure before and after the Zircos-E system. The roughness parameters were assessed using an SJ-410 profilometer. The etched zirconia surface is more homogeneous over the entire surface, but some localized forms of erosion exist. The etching of zirconia ceramics caused changes in the surface structure of zirconia and a significant increase in the shear bond strength between zirconia and resin cement. The use of primers positively affects the adhesion between resin cement and zirconia. Aging with thermocycler significantly reduced the shear bond strength, with one exception—sandblasted samples with MKZ Primer. Standard ceramic surface preparation, involving only alumina sandblasting, does not provide a satisfactory bond. The use of etching with the Zircos-E system and primers had a positive effect on the strength of the zirconium–resin cement connection.

Topics
  • impedance spectroscopy
  • surface
  • zirconium
  • strength
  • cement
  • etching
  • aging
  • ceramic
  • resin
  • aging