People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cotrut, Cosmin Mihai
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024In Vitro Characterization of Hydroxyapatite-Based Coatings Doped with Mg or Zn Electrochemically Deposited on Nanostructured Titaniumcitations
- 2023Evaluation of Galvanic and Crevice Corrosion of Watch Case Middle (1.4435 Steel) and Bottom (Panacea® Steel) Assembly Supposed to Be in Prolonged Contact with the Skin
- 2023In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatite Coatings for Medical Applicationscitations
- 2023Comparison of 316L and Ti6Al4V biomaterial coated by ZrCu-based thin films metallic glasses : structure, morphology, wettability, protein adsorption, corrosion resistance, biomineralizationcitations
- 2022Deposition temperature effect on sputtered hydroxyapatite coatings prepared on AZ31B alloy substratecitations
- 2021New Ti-35Nb-7Zr-5Ta Alloy Manufacturing by Electron Beam Melting for Medical Application Followed by High Current Pulsed Electron Beam Treatmentcitations
- 2019The effect of hybrid coatings based on hydrogel, biopolymer and inorganic components on the corrosion behavior of titanium bone implants.citations
Places of action
Organizations | Location | People |
---|
article
In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatite Coatings for Medical Applications
Abstract
<jats:p>Osseointegration plays the most important role in the success of an implant. One of the applications of hydroxyapatite (HAp) is as a coating for metallic implants due to its bioactive nature, which improves osteoconduction. The purpose of this research was to assess the in vitro behavior of HAp undoped and doped with Ag and/or Sr obtained by galvanostatic pulsed electrochemical deposition. The coatings were investigated in terms of chemical bonds, contact angle and surface free energy, electrochemical behavior, in vitro biomineralization in acellular media (SBF and PBS), and biocompatibility with preosteoblasts cells (MC3T3-E1 cell line). The obtained results highlighted the beneficial impact of Ag and/or Sr on the HAp. The FTIR spectra confirmed the presence of hydroxyapatite within all coatings, while in terms of wettability, the contact angle and surface free energy investigations showed that all surfaces were hydrophilic. The in vitro behavior of MC3T3-E1 indicated that the presence of Sr in the HAp coatings as a unique doping agent or in combination with Ag elicited improved cytocompatibility in terms of cell proliferation and osteogenic differentiation. Therefore, the composite HAp-based coatings showed promising potential for bone regeneration applications.</jats:p>