Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sen, Amrita

  • Google
  • 2
  • 9
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Nanocluster Evolution in D9 Austenitic Steel under Neutron and Proton Irradiationcitations
  • 2022Elimination of remnant phases in low-temperature growth of wurtzite ScAlN by molecular-beam epitaxy16citations

Places of action

Chart of shared publication
Bejawada, Akshara
1 / 1 shared
Wharry, Janelle
2 / 2 shared
Mullurkara, Suraj Venkateshwaran
1 / 2 shared
Manfra, Michael
1 / 1 shared
Malis, Oana
1 / 1 shared
Dzuba, Brandon
1 / 1 shared
Dubey, Megha
1 / 2 shared
Diaz, Rosa E.
1 / 7 shared
Nguyen, Trang
1 / 3 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Bejawada, Akshara
  • Wharry, Janelle
  • Mullurkara, Suraj Venkateshwaran
  • Manfra, Michael
  • Malis, Oana
  • Dzuba, Brandon
  • Dubey, Megha
  • Diaz, Rosa E.
  • Nguyen, Trang
OrganizationsLocationPeople

article

Nanocluster Evolution in D9 Austenitic Steel under Neutron and Proton Irradiation

  • Bejawada, Akshara
  • Wharry, Janelle
  • Sen, Amrita
  • Mullurkara, Suraj Venkateshwaran
Abstract

<jats:p>Austenitic stainless steel D9 is a candidate for Generation IV nuclear reactor structural materials due to its enhanced irradiation tolerance and high-temperature creep strength compared to conventional 300-series stainless steels. But, like other austenitic steels, D9 is susceptible to irradiation-induced clustering of Ni and Si, the mechanism for which is not well understood. This study utilizes atom probe tomography (APT) to characterize the chemistry and morphology of Ni–Si nanoclusters in D9 following neutron or proton irradiation to doses ranging from 5–9 displacements per atom (dpa) and temperatures ranging from 430–683 °C. Nanoclusters form only after neutron irradiation and exhibit classical coarsening with increasing dose and temperature. The nanoclusters have Ni3Si stoichiometry in a Ni core–Si shell structure. This core–shell structure provides insight into a potentially unique nucleation and growth mechanism—nanocluster cores may nucleate through local, spinodal-like compositional fluctuations in Ni, with subsequent growth driven by rapid Si diffusion. This study underscores how APT can shed light on an unusual irradiation-induced nanocluster nucleation mechanism active in the ubiquitous class of austenitic stainless steels.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • stainless steel
  • strength
  • creep
  • clustering
  • atom probe tomography