Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Petkovic Didovic, Mirna

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations10citations

Places of action

Chart of shared publication
Jurešić, Gordana Čanadi
1 / 1 shared
Rincic Mlinaric, Marijana
1 / 1 shared
Žigon, Jure
1 / 8 shared
Fiket, Zeljka
1 / 1 shared
Jelovica Badovinac, Ivana
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Jurešić, Gordana Čanadi
  • Rincic Mlinaric, Marijana
  • Žigon, Jure
  • Fiket, Zeljka
  • Jelovica Badovinac, Ivana
OrganizationsLocationPeople

article

Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations

  • Jurešić, Gordana Čanadi
  • Rincic Mlinaric, Marijana
  • Žigon, Jure
  • Fiket, Zeljka
  • Petkovic Didovic, Mirna
  • Jelovica Badovinac, Ivana
Abstract

<jats:p>Despite numerous studies on ion release from orthodontic appliances, no clear conclusions can be drawn due to complex interrelations of multiple factors. Therefore, as the first part of a comprehensive investigation of cytotoxicity of eluted ions, the objective of this study was to analyze four parts of a fixed orthodontic appliance. Specifically, NiTi archwires and stainless steel (SS) brackets, bands, and ligatures were immersed in artificial saliva and studied for morphological and chemical changes after 3-, 7-, and 14-day immersion, using the SEM/EDX technique. Ion release profiles were analyzed for all eluted ions using inductively coupled plasma mass spectrometry (ICP-MS). The results demonstrated dissimilar surface morphologies among parts of the fixed appliance, due to variations in manufacturing processes. The onset of pitting corrosion was observed for the SS brackets and bands in the as-received state. Protective oxide layers were not observed on any of the parts, but adherent layers developed on SS brackets and ligatures during immersion. Salt precipitation, mainly KCl, was also observed. ICP-MS proved to be more sensitive than SEM/EDX and exhibited results undetected by SEM/EDX. Ion release was an order-of-magnitude higher for SS bands compared to other parts, which was attributed to manufacturing procedure (welding). Ion release did not correlate with surface roughness.</jats:p>

Topics
  • morphology
  • surface
  • stainless steel
  • scanning electron microscopy
  • pitting corrosion
  • precipitation
  • Energy-dispersive X-ray spectroscopy
  • spectrometry
  • inductively coupled plasma mass spectrometry