People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Piotrkiewicz, Paulina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Study of the impact of metallic components Cu, Ni, Cr, and Mo on the microstructure of Al2O3–Cu–Me compositescitations
- 2023Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sinteringcitations
- 2021Zirconia–Alumina Composites Obtained by Centrifugal Slip Casting as Attractive Sustainable Material for Application in Constructioncitations
- 2021Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sinteringcitations
- 2021Environmental footprint as a criterion in the ZTA composites forming process via centrifugal slip castingcitations
- 2021Sintering Behavior, Thermal Expansion, and Environmental Impacts Accompanying Materials of the Al2O3/ZrO2 System Fabricated via Slip Castingcitations
- 2021Characterization of the alumina oxide, copper and nickel powders and their processing intended for fabrication of the novel hybrid composite: A comparative studycitations
- 2021Investigation on microstructure and selected properties of aluminum oxide–copper–nickel ceramic–metal compositescitations
- 2021Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applicationscitations
- 2021Investigation of microstructure and selected properties of Al2O3-Cu and Al2O3-Cu-Mo compositescitations
- 2021Novel Functionally Gradient Composites Al2O3-Cu-Mo Obtained via Centrifugal Slip Castingcitations
- 2020Effect of the powder consolidation method type on the microstructure and selected properties of Al2O3-Cu-Ni compositescitations
- 2020Microstructure and mechanical properties of Al2O3-Cu-Ni hybrid composites fabricated by slip castingcitations
- 2020Effect of the sintering temperature on microstructure and properties of Al2O3–Cu–Ni hybrid composites obtained by PPScitations
- 2020The influence of metal phase composition on microstructure and mechanical properties of Al2O3-Cu-Cr ceramic metal compositescitations
- 2019Investigation on fabrication and property of graded composites obtained via centrifugal casting in the magnetic fieldcitations
- 2019A possibility to obtain Al2O3-Cu-Ni composites via slip casting method
- 2019Al2O3-Cu-Mo hybrid composites: fabrication, microstructure, properties
Places of action
Organizations | Location | People |
---|
article
Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sintering
Abstract
<jats:p>The scientific goal of this paper is to study and explain the relationship between the microstructure of a ceramic–intermetallic composite fabricated by consolidating a mixture of Al2O3 and NiAl-Al2O3 using the PPS technique and its basic mechanical properties. Six series of composites were manufactured. The obtained samples differed in the sintering temperature and content of compo-powder. The base powders, compo-powder, and composites were investigated using SEM equipped with an EDS and XRD. Hardness tests and KIC measurements were applied to estimate the mechanical properties of the fabricated composites. The wear resistance was evaluated using a “ball-on-disc” method. The results demonstrate that the density of the obtained composites increases with the increased temperature of the sintering. The content of NiAl + 20 wt.% Al2O3 did not have a determining effect on the hardness of the manufactured composites. The highest hardness, contacting 20.9 ± 0.8 GPa, was found for the composite series sintered at 1300 °C and 2.5 vol.% of compo-powder. The highest KIC value from all the studied series equaled 8.13 ± 0.55 MPa·m0.5 and was also achieved for the series manufactured at 1300 °C (2.5 vol.% of compo-powder). The average friction coefficient during the ball-friction test with the Si3N4 ceramic counter-sample was between 0.8 and 0.95.</jats:p>