People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Żurowski, Radosław
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Functionalization of graphene oxide surface by conjugation with glucosamine and analysis of interactions occurring in nanoceramic-graphene heterostructurescitations
- 2023Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sinteringcitations
- 2022Characterization of Al2O3 Matrix Composites Fabricated via the Slip Casting Method Using NiAl-Al2O3 Composite Powdercitations
- 2021Zirconia–Alumina Composites Obtained by Centrifugal Slip Casting as Attractive Sustainable Material for Application in Constructioncitations
- 2021Environmental footprint as a criterion in the ZTA composites forming process via centrifugal slip castingcitations
- 2021Sintering Behavior, Thermal Expansion, and Environmental Impacts Accompanying Materials of the Al2O3/ZrO2 System Fabricated via Slip Castingcitations
- 2021Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applicationscitations
- 2018Enhancement of thermo-rheological properties of smart materials based on SiO2 and PPG modificated with expanded graphitecitations
- 2018Copolymers dispersions designed to shaping of ceramic materials - Investigations of glass transition temperature, thermal stability and decomposition of water-thinnable binderscitations
- 2017New dynamics in poly(propylene glycol) based glass-forming nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sintering
Abstract
<jats:p>The scientific goal of this paper is to study and explain the relationship between the microstructure of a ceramic–intermetallic composite fabricated by consolidating a mixture of Al2O3 and NiAl-Al2O3 using the PPS technique and its basic mechanical properties. Six series of composites were manufactured. The obtained samples differed in the sintering temperature and content of compo-powder. The base powders, compo-powder, and composites were investigated using SEM equipped with an EDS and XRD. Hardness tests and KIC measurements were applied to estimate the mechanical properties of the fabricated composites. The wear resistance was evaluated using a “ball-on-disc” method. The results demonstrate that the density of the obtained composites increases with the increased temperature of the sintering. The content of NiAl + 20 wt.% Al2O3 did not have a determining effect on the hardness of the manufactured composites. The highest hardness, contacting 20.9 ± 0.8 GPa, was found for the composite series sintered at 1300 °C and 2.5 vol.% of compo-powder. The highest KIC value from all the studied series equaled 8.13 ± 0.55 MPa·m0.5 and was also achieved for the series manufactured at 1300 °C (2.5 vol.% of compo-powder). The average friction coefficient during the ball-friction test with the Si3N4 ceramic counter-sample was between 0.8 and 0.95.</jats:p>