People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ulewicz, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Influence of TiN Coating on the Drawing Force and Friction Coefficient in the Deep Drawing Process of AlMg4.5Mn0.7 Thin Sheetscitations
- 2022Analysis of Filler Metals Influence on Quality of Hard-Faced Surfaces of Gears Based on Tests in Experimental and Operating Conditionscitations
- 2021Influence of different hard-facing procedures on quality of surfaces of regenerated gearscitations
- 2017The effect of alloying method on the structure and properties of sintered stainless steelcitations
- 2016Influence of selected technological factors on fatigue strength
- 2015Influence of Electrodeposited Coatings on Ultra-High-Cycle Fatigue Life of S235 Structural Steelcitations
- 2014Structure and mechanical properties of fine-grained steelscitations
- 2014The impact of welding wire on the mechanical properties of welded joints
- 2013Fatigue testing structural steel as a factor of safety of technical facilities maintenance
- 2013DEPENDANCE BETWEEN CHARGE COMPOSITION AND FATIGUE PROPERTIES OF NODULAR CAST IRONS
Places of action
Organizations | Location | People |
---|
article
Influence of TiN Coating on the Drawing Force and Friction Coefficient in the Deep Drawing Process of AlMg4.5Mn0.7 Thin Sheets
Abstract
<jats:p>The influence of various process parameters on the deep drawing process is a current research topic in sheet metal forming technology. Starting from the application of the previously constructed original testing device, an original tribological model was developed based on the process of sheet metal strip sliding between flat contact surfaces under variable pressures. A complex experiment was executed using an Al alloy sheet, tool contact surfaces of different roughness, two types of lubricants and variable contact pressures. The procedure included analytically pre-defined contact pressure functions based on which, for each of the mentioned conditions, the dependencies of the drawing forces and friction coefficients were obtained. The pressure in function P1 constantly decreased from a high initial value until the minimum, while in function P3 the pressure increased until the minimum value at the halfway point of the stroke, after which it increased up to the initial value. On the other hand, the pressure in function P2 constantly increased from the initial minimum value until the maximum value, while in function P4 the pressure increased until reaching the maximum value at the halfway point of the stroke, after which it decreased to the minimum value. This enabled the determination of the influence of tribological factors on the process parameters of intensity of traction (deformation force) and coefficient of friction. The pressure functions starting with decreasing trends produced higher values for the traction forces and the friction coefficient. In addition, it was established that the roughness of the contact surfaces of the tool, especially those with titanium nitride coating, has a significant influence on the process parameters. For surfaces of lower roughness (polished), a tendency of the Al thin sheet to form a glued-on layer was noticed. This was especially prominent for lubrication with MoS2-based grease under conditions of high contact pressure (functions P1 and P4 at the beginning of the contact).</jats:p>