People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ali, Muhammad Asad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Exploring wide-parametric range for tool electrode selection based on surface characterization and machining rate employing powder-mixed electric discharge machining process for Ti6Al4V ELIcitations
- 2023Machining of Triangular Holes in D2 Steel by the Use of Non-Conventional Electrodes in Die-Sinking Electric Discharge Machiningcitations
- 2022An in-depth analysis of tool wear mechanisms and surface integrity during high-speed hard turning of AISI D2 steel via novel insertscitations
- 2022Thermal experiments and analysis on adhesive cleaning of work-holding devices by grindingcitations
- 2022A comprehensive efficiency evaluation of conventional and ablation sand casting on the example of the AlSi7Mg alloy impellercitations
- 2022A comprehensive efficiency evaluation of conventional and ablation sand casting on the example of the AlSi7Mg alloy impeller
- 2022Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validationcitations
- 2022Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributescitations
- 2021Parametric analysis of turning HSLA steel under minimum quantity lubrication (MQL) and nanofluids-based minimum quantity lubrication (NF-MQL)citations
- 2021A detailed machinability assessment of DC53 steel for die and mold industry through wire electric discharge machiningcitations
- 2020Optimization of WEDM for precise machining of novel developed Al6061-7.5% SiC squeeze casted compositecitations
- 2020Modelling the Mechanical Attributes (Roughness, Strength, and Hardness) of Al-alloy A356 during Sand Castingcitations
- 2019Evaluating Material’s Interaction in Wire Electrical Discharge Machining of Stainless Steel (304) for Simultaneous Optimization of Conflicting Responsescitations
- 2017Analyzing the Effect of Squeeze Casting Process Parameters on Mechanical Properties of Overcast Al-Alloy Joint using RSM
Places of action
Organizations | Location | People |
---|
article
Machining of Triangular Holes in D2 Steel by the Use of Non-Conventional Electrodes in Die-Sinking Electric Discharge Machining
Abstract
<jats:p>Electric discharge machining is relatively a slow process in terms of machining time and material removal rate. The presence of overcut and the hole taper angle caused by the excessive tool wear are other challenges in the electric discharge machining die-sinking process. The areas of focus to solve these challenges in the performance of electric discharge machines include increasing the rate of material removal, decreasing the rate of tool wear, and reducing the rate of hole taper angle and overcut. Triangular cross-sectional through-holes have been produced in D2 steel through die-sinking electric discharge machining (EDM). Conventionally, the electrode with uniform triangular cross-section throughout the electrode length is used to machine triangular holes. In this study, new designs of electrodes (non-conventional designs) are employed by introducing circular relief angles. For material removal rate (MRR), tool wear rate (TWR), overcut, taper angle, and surface roughness of the machined holes, the machining performance of conventional and unconventional electrode designs is compared. A significant improvement in MRR (32.6% increase) has been achieved by using non-conventional electrode designs. Similarly, the hole quality resulted by non-conventional electrodes is way better than hole quality corresponding to conventional electrode designs, especially in terms of overcut and hole taper angle. A reduction of 20.6% in overcut and a reduction of 72.5% in taper angle can be achieved through newly designed electrodes. Finally, one electrode design has been selected (electrode with 20 degree relief angle) as the most appropriate electrode resulting in better EDM performance in terms of MRR, TWR, overcut, taper angle, and surface roughness of triangular holes.</jats:p>