Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Przybylak, Marcin

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Polysiloxanes and Silanes with Various Functional Groups—New Compounds for Flax Fibers’ Modification4citations

Places of action

Chart of shared publication
Rojewski, Szymon
1 / 2 shared
Gieparda, Weronika
1 / 2 shared
Doczekalska, Beata
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Rojewski, Szymon
  • Gieparda, Weronika
  • Doczekalska, Beata
OrganizationsLocationPeople

article

Polysiloxanes and Silanes with Various Functional Groups—New Compounds for Flax Fibers’ Modification

  • Rojewski, Szymon
  • Przybylak, Marcin
  • Gieparda, Weronika
  • Doczekalska, Beata
Abstract

<jats:p>There is an increasing desire to use natural products that will be both effective and biodegradable. The aim of this work is to investigate the effect of modifying flax fibers with silicon compounds (silanes and polysiloxanes), as well as examining the effect of the mercerization process on their properties. Two types of polysiloxanes have been synthesized and confirmed by infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Scanning electron microscopy (SEM), FTIR, thermogravimetry analysis (TGA) and pyrolysis-combustion flow calorimetry (PCFC) tests of the fibers were performed. On the SEM pictures, flax fibers purified and covered with silanes were visible after treatment. FTIR analysis showed stable bonds between the fibers and the silicon compounds. Promising results of thermal stability were obtained. It was also found that modification had a positive effect on the flammability. The conducted research showed that the use of such modifications, in the context of using flax fibers for composites, can yield very good results.</jats:p>

Topics
  • pyrolysis
  • impedance spectroscopy
  • compound
  • scanning electron microscopy
  • composite
  • combustion
  • thermogravimetry
  • Silicon
  • Nuclear Magnetic Resonance spectroscopy
  • infrared spectroscopy
  • calorimetry
  • flammability