People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Torzewski, Janusz
Military University of Technology in Warsaw
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023The Influence of Process Parameters on the Low-Cycle Fatigue Properties of 316L Steel Parts Produced by Powder Bed Fusioncitations
- 2023Regeneration of the Damaged Parts with the Use of Metal Additive Manufacturing—Case Studycitations
- 2022Processability of 21NiCrMo2 Steel Using the Laser Powder Bed Fusion: Selection of Process Parameters and Resulting Mechanical Propertiescitations
- 2022Bending Strength of Polyamide-Based Composites Obtained during the Fused Filament Fabrication (FFF) Processcitations
- 2021Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applicationscitations
- 2020The influence of welding parameters on macrostructure and mechanical properties of Sc-modified AA2519-T62 FSW jointscitations
Places of action
Organizations | Location | People |
---|
article
Regeneration of the Damaged Parts with the Use of Metal Additive Manufacturing—Case Study
Abstract
<jats:p>The paper shows the results related to regeneration possibilities analysis of a damaged slider removed from a hydraulic splitter that was repaired using additive manufacturing (AM), laser-based powder bed fusion of metals (PBF-LB/M) technology. The results demonstrate the high quality of the connection zone between the original part and the regenerated zone. The hardness measurement conducted at the interface between the two materials indicated a significant increase equal to 35% by using the M300 maraging steel, as a material for regeneration. Additionally, the use of digital image correlation (DIC) technology enabled the identification of the area where the largest deformation occurred during the tensile test, which was out of the connection zone between the two materials.</jats:p>