People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Małek, Marcin
Military University of Technology in Warsaw
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023A Comparative Investigation of Properties of Metallic Parts Additively Manufactured through MEX and PBF-LB/M Technologiescitations
- 2023Regeneration of the Damaged Parts with the Use of Metal Additive Manufacturing—Case Studycitations
- 2022Bending Strength of Polyamide-Based Composites Obtained during the Fused Filament Fabrication (FFF) Processcitations
- 2021The Influence of the Microstructure of Ceramic-Elastomer Composites on Their Energy Absorption Capabilitycitations
- 2020The Influence of Heat Treatment on Low Cycle Fatigue Properties of Selectively Laser Melted 316L Steelcitations
- 2019Research on microstructure and mechanical properties of explosively welded stainless steel/commercially pure Ti platecitations
Places of action
Organizations | Location | People |
---|
article
Regeneration of the Damaged Parts with the Use of Metal Additive Manufacturing—Case Study
Abstract
<jats:p>The paper shows the results related to regeneration possibilities analysis of a damaged slider removed from a hydraulic splitter that was repaired using additive manufacturing (AM), laser-based powder bed fusion of metals (PBF-LB/M) technology. The results demonstrate the high quality of the connection zone between the original part and the regenerated zone. The hardness measurement conducted at the interface between the two materials indicated a significant increase equal to 35% by using the M300 maraging steel, as a material for regeneration. Additionally, the use of digital image correlation (DIC) technology enabled the identification of the area where the largest deformation occurred during the tensile test, which was out of the connection zone between the two materials.</jats:p>