People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Friese, Danny
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024New Approaches to 3D Non-Crimp Fabric Manufacturing
- 2023Improved Tensile and Bond Properties through Novel Rod Constructions Based on the Braiding Technique for Non-Metallic Concrete Reinforcementscitations
- 2023DEVELOPMENT OF A YARN GUIDING AND IMPREGNATION TECHNOLOGY FOR ROBOT-ASISSTED FIBER MANUFACTURING OF 3D TEXTILE REINFORCEMENT STRUCTURES
- 2023Robot-assisted Manufacturing Technology for 3D Non-metallic Reinforcement Structures in the Construction Applicationscitations
- 20233D Textiles Based on Warp Knitted Fabrics: A Reviewcitations
- 2022Development of an application-oriented Yarn Impregnation and Fixation Concept for the robot-supported Manufacturing of biologically inspired load adapted 3D Textile Reinforcement Structures in Concrete Application
- 2022Development of a method and technology for the production of 3D knitted reinforcement gridscitations
- 2022Textile reinforcement structures for concrete construction applications––a reviewcitations
Places of action
Organizations | Location | People |
---|
document
3D Textiles Based on Warp Knitted Fabrics: A Review
Abstract
<p>Fibre-reinforced composites (FRCs) are already well established in several industrial sectors such as aerospace, automotive, plant engineering, shipbuilding and construction. The technical advantages of FRCs over metallic materials are well researched and proven. The key factors for an even wider industrial application of FRCs are the maximisation of resource and cost efficiency in the production and processing of the textile reinforcement materials. Due to its technology, warp knitting is the most productive and therefore cost-effective textile manufacturing process. In order to produce resource-efficient textile structures with these technologies, a high degree of prefabrication is required. This reduces costs by reducing the number of ply stacks, and by reducing the number of extra operations through final path and geometric yarn orientation of the preforms. It also reduces waste in post-processing. Furthermore, a high degree of prefabrication through functionalisation offers the potential to extend the application range of textile structures as purely mechanical reinforcements by integrating additional functions. So far, there is a gap in terms of an overview of the current state-of-the-art of relevant textile processes and products, which this work aims to fill. The focus of this work is therefore to provide an overview of warp knitted 3D structures.</p>