People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolodzy, Fabian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Novel Pectin Binder for Satelliting Carbides to H13 Tool Steel for PBF-LB Processing
Abstract
In order to enhance the range of processable alloys of laser-based powder bed fusion, reinforced alloys have gained focus. Satelliting is a recently introduced method for adding fine additives to larger parent powder particles using a bonding agent. Satellited particles prevent a local demixing due to size and density effects of the powder. In this study, the satelliting method is used for the additivation of Cr3C2 to AISI H13 tool steel via a functional polymer binder (pectin). The investigation includes a detailed binder analysis and comparison to the previously used PVA binder as well as processability in PBF-LB and the microstructure of the alloy. The results reveal that pectin is a suitable binder for the satelliting process and the demixing behavior that appears when using a simple powder blend can be significantly reduced. However, the alloy is enriched with carbon, which results in austenite being retained. Thus, in future research, a reduced binder content will be investigated.