People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mayer, Kurt
University of Graz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Ex-situ measurement of chemical membrane degradation using photometry
- 2023Mechanistic study of fast performance decay of Pt-Cu alloy based catalyst layers for polymer electrolyte fuel cells through electrochemical impedance spectroscopycitations
- 2023Mechanistic study of fast performance decay of PtCu alloy-based catalyst layers for polymer electrolyte fuel cells through electrochemical impedance spectroscopycitations
- 2022Derivate photometry as a method for the determination of fluorine emission rates in polymer electrolyte fuel cells
- 2022Colorimetric method for the determination of fluoride emission rates in polymer electrolyte fuel cells
- 2022Influence of electrode composition and operating conditions on the performance and the electrochemical impedance spectra of polymer electrolyte fuel cells
- 2021The Influence Catalyst Layer Thickness on Resistance Contributions of PEMFC Determined by Electrochemical Impedance Spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Mechanistic study of fast performance decay of Pt-Cu alloy based catalyst layers for polymer electrolyte fuel cells through electrochemical impedance spectroscopy
Abstract
In the past, platinum–copper catalysts have proven to be highly active for the oxygen reduction reaction (ORR), but transferring the high activities measured in thin-film rotating disk elec-trodes (TF-RDEs) to high-performing membrane electrode assemblies (MEAs) has proven diffi-cult due to stability issues during operation. High initial performance can be achieved. Howev-er, fast performance decay on a timescale of 24 h is induced by repeated voltage load steps with H2/air supplied. This performance decay is accelerated if high relative humidity (>60% RH) is set for a prolonged time and low voltages are applied during polarization. The reasons and possible solutions for this issue have been investigated by means of electrochemical impedance spec-troscopy and distribution of relaxation time analysis (EIS–DRT). The affected electrochemical sub-processes have been identified by comparing the PtCu electrocatalyst with commercial Pt/C benchmark materials in homemade catalyst-coated membranes (CCMs). The proton transport resistance (Rpt) increased by a factor of ~2 compared to the benchmark materials. These results provide important insight into the challenges encountered with the de-alloyed PtCu/KB elec-trocatalyst during cell break-in and operation. This provides a basis for improvements in the catalysts’ design and break-in procedures for the highly attractive PtCu/KB catalyst system.