People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Markovsky, Pavlo
G.V. Kurdyumov Institute for Metal Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Mechanical Energy Absorption Ability of Titanium-Based Porous Structures Produced by Various Powder Metallurgy Approachescitations
- 2021Mechanical Behavior of Titanium Based Metal Matrix Composites Reinforced with TiC or TiB Particles under Quasi-Static and High Strain-Rate Compressioncitations
- 2020Friction welding of conventional Ti-6Al-4V alloy with a Ti-6Al-4V based metal matrix composite reinforced by TiC
- 2020Electron Beam Cold Hearth Melted Titanium Alloys and the Possibility of Their Use as Anti-Ballistic Materialscitations
- 2020Structure and Properties of Layered Ti-6Al-4V-Based Materials Fabricated Using Blended Elemental Powder Metallurgycitations
- 2020Diffusion bonding of TiC or TiB reinforced Ti–6Al–4V matrix composites to conventional Ti–6Al–4V alloycitations
- 2018Thermo-Mechanical Treatment of Titanium Based Layered Structures Fabricated by Blended Elemental Powder Metallurgycitations
- 2018Mechanical Behavior of Titanium Alloys under Different Conditions of Loadingcitations
- 2010Application of Local Rapid Heat Treatment for Improvement of Microstructure and Mechanical Properties of Titanium Productscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical Energy Absorption Ability of Titanium-Based Porous Structures Produced by Various Powder Metallurgy Approaches
Abstract
<jats:p>Porous materials are very efficient in absorbing mechanical energy, for instance, in combined armor, in order to improve the anti-ballistic protection characteristics. In the present study, porous titanium-based structures were manufactured via three different powder metallurgy methods using titanium hydride (TiH2) powder, which provided activated sintering, owing to dehydrogenation. The emission of hydrogen and shrinkage of powder particles on dehydrogenation also added an additional potential to control the sintering process and create desirable porosities. TiH2 powder was sintered with additions of NaCl or ammonium carbide as pore holding removable agents, while highly porous Ti-Al structures were formed via liquid phase reactive sintering of TiH2 and Al powders. The microstructures and porosities of sintered dehydrogenated titanium and Ti-Al structures were comparatively studied. Mechanical characteristics were evaluated using compression testing with strain rates varying from quasi-static to high levels. The resonant frequency method was also employed to determine damping parameters and elastic modulus of these materials. All testing methods were aimed at characterizing the energy-absorbing ability of the obtained porous structures. The desired strength, plasticity and energy-absorbing characteristics of porous titanium-based structures were assessed, and the possibilities of their application were also discussed. Based on the obtained results, it was found that porous titanium materials produced with the use of ammonium carbonate showed promising energy absorption properties.</jats:p>