People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Longana, Marco Luigi
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024High Performance Ductile and Pseudo-ductile Polymer Matrix Compositescitations
- 2024Characterisation of Highly-Aligned, Discontinuous, Fibre Composites for Compressive Performance
- 2023Recycling end-of-life sails by carbon fibre reclamation and composite remanufacture using the HiPerDiF fibre alignment technologycitations
- 2023Recycling of carbon fibre reinforced polymer composites with superheated steam – A reviewcitations
- 2023Steering Potential for Printing Highly Aligned Discontinuous Fibre Composite Filamentcitations
- 2023Experimental and hydrodynamic methods to determine aqueous dispersion of discontinuous reclaimed carbon fibres
- 2022HIGHLY ALIGNED DISCONTINUOUS FIBRE COMPOSITE FILAMENTS FOR FUSED DEPOSITION MODELLING: OPEN-HOLE CASE STUDY
- 2022Developing aligned discontinuous flax fibre compositescitations
- 2021A life cycle engineering perspective on biocomposites as a solution for a sustainable recoverycitations
- 2020Remanufacturing of woven carbon fibre fabric production waste into high performance aligned discontinuous fibre compositescitations
- 2020Characterisation of natural fibres for sustainable discontinuous fibre composite materialscitations
- 2019Post-impact behaviour of pseudo-ductile thin-ply angle-ply hybrid compositescitations
- 2018Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid compositescitations
- 2018Reclaimed Carbon and Flax Fibre Compositescitations
- 2018Development and application of a quality control and property assurance methodology for reclaimed carbon fibres based on the HiPerDiF method and interlaminated hybrid specimenscitations
- 2018Development of a closed-loop recycling process for discontinuous carbon fibre polypropylene compositescitations
- 2017Aligned discontinuous intermingled reclaimed/virgin carbon fibre composites for high performance and pseudo-ductile behaviour in interlaminated carbon-glass hybridscitations
- 20173D PRINTED COMPOSITES – BENCHMARKING THE STATE-OF-THE-ART
- 2015Aligned short fibre composites with nonlinear behaviour
- 2015Aligned short fibre hybrid composites with virgin and recycled carbon fibres
- 2015Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibrescitations
- 2012Identification of constitutive properties of composite materials under high strain rate loading using optical strain measurement techniques
- 2011Approaches to synchronise conventional measurements with optical techniques at high strain ratescitations
- 2010Application of optical measurement techniques to high strain rate deformations in composite materials
Places of action
Organizations | Location | People |
---|
article
Steering Potential for Printing Highly Aligned Discontinuous Fibre Composite Filament
Abstract
DcAFF (discontinuous aligned fibre filament) is a novel material for fused filament fabrication (FFF) 3D printing made of highly aligned discontinuous fibres produced using high performance discontinuous fibre (HiPerDiF) technology. It reinforces a thermoplastic matrix to provide high mechanical performance and formability. Accurate printing of DcAFF poses a challenge, especially for complex geometries, because: (i) there is a discrepancy between the path where the filament experiences the adhering pressure from the filleted nozzle and the nozzle path; and (ii) the rasters display poor adhesion to the build platform immediately after deposition, which causes the filament to be dragged when the printing direction changes. This paper explains the implication of these phenomena on steering capabilities and examines the techniques for improving DcAFF printing accuracy. In the first approach, the machine parameters were adjusted to improve the quality of the sharp turning angle without changing the desired path, but this showed insignificant effects in terms of precision improvements. In the second approach, a printing path modification with a compensation algorithm was introduced. The nature of the inaccuracy of the printing at the turning point was studied with a first-order lag relationship. Then the equation to describe the deposition raster inaccuracy was determined. A proportional–integral (PI) controller was added to the equation to calculate the nozzle movement in order to bring the raster back to the desired path. The applied compensation path is shown to give an accuracy improvement in curvilinear printing paths. This is particularly beneficial when printing larger circular diameter curvilinear printed parts. The developed printing approach can be applied with other fibre reinforced filaments to achieve complex geometries.