Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Herbei, Elena Emanuela

  • Google
  • 4
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Corrosion Tendency of S235 Steel in 3.5% NaCl Solution and Drinking Water During Six Months of Exposurecitations
  • 2023Cyclic Voltammetry of Screen-Printed Carbon Electrode Coated with Ag-ZnO Nanoparticles in Chitosan Matrix7citations
  • 2022Low-Temperature and UV Irradiation Effect on Transformation of Zirconia -MPS nBBs-Based Gels into Hybrid Transparent Dielectric Thin Films1citations
  • 2017The Influence of Electrodes Deposition on the Interface and Dielectric Characteristics of Polymer Gate for Thin Films Transistors1citations

Places of action

Chart of shared publication
Başliu, Vasile
1 / 1 shared
Ghisman, Viorica
1 / 3 shared
Bogatu, Nicoleta
1 / 4 shared
Mureşan, Alina Crina
1 / 1 shared
Buruiană, Daniela Laura
1 / 1 shared
Busila, Mariana
1 / 4 shared
Alexandru, Petrică
1 / 1 shared
Chart of publication period
2024
2023
2022
2017

Co-Authors (by relevance)

  • Başliu, Vasile
  • Ghisman, Viorica
  • Bogatu, Nicoleta
  • Mureşan, Alina Crina
  • Buruiană, Daniela Laura
  • Busila, Mariana
  • Alexandru, Petrică
OrganizationsLocationPeople

article

Cyclic Voltammetry of Screen-Printed Carbon Electrode Coated with Ag-ZnO Nanoparticles in Chitosan Matrix

  • Busila, Mariana
  • Herbei, Elena Emanuela
  • Alexandru, Petrică
Abstract

<jats:p>In this paper, the authors describe the fabrication of nanocomposite chitosan-based systems of zinc oxide (ZnO), silver (Ag) and Ag-ZnO. Recently, the development of coated screen-printed electrodes using metal and metal oxide nanoparticles (NPs) for the specific detection and monitoring of different cancer tumors has been obtaining important results. Ag, ZnO NPs and Ag-ZnO prepared by the hydrolysis of zinc acetate blended with a chitosan (CS) matrix were used for the surface modification of screen-printed carbon electrodes (SPCEs) in order to analyze the electrochemical behavior of the typical redox system of a 10 mM potassium ferrocyanide—0.1 M buffer solution (BS). The solutions of CS, ZnO/CS, Ag/CS and Ag-ZnO/CS were prepared in order to modify the carbon electrode surface, and were measured at different scan rates from 0.02 V/s to 0.7 V/s by cyclic voltammetry. The cyclic voltammetry (CV) was performed on a house-built potentiostat (HBP). The cyclic voltammetry of the measured electrodes showed the influence of varying the scan rate. The variation of the scan rate has an influence on the intensity of the anodic and cathodic peak. Both values of currents (anodic and cathodic currents) have higher values for 0.1 V/s (Ia = 22 μA and Ic = −25 μA) compared to the values for 0.06 V/s (Ia = 10 μA and Ic = −14 μA). The CS, ZnO/CS, Ag/CS and Ag-ZnO/CS solutions were characterized using a field emission scanning electron microscopy (FE-SEM) with EDX elemental analysis. The modified coated surfaces of screen-printed electrodes were analyzed using optical microscopy (OM). The present coated carbon electrodes showed a different waveform compared to the voltage applied to the working electrode, depending on the scan rate and chemical composition of the modified electrodes.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • surface
  • Carbon
  • silver
  • zinc
  • chemical composition
  • Potassium
  • Energy-dispersive X-ray spectroscopy
  • optical microscopy
  • cyclic voltammetry
  • elemental analysis
  • ion chromatography
  • field-emission scanning electron microscopy