Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sagawa, K.

  • Google
  • 2
  • 6
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press.3citations
  • 2022Strengthening Process by Electron Beam to Carbon Fiber for Impact Strength Enhancement of Interlayered Thermoplastic-Polypropylene Carbon Fiber Composite.4citations

Places of action

Chart of shared publication
Miura, E.
1 / 1 shared
Faudree, Michael
2 / 3 shared
Salvia, M.
2 / 4 shared
Nishi, Y.
2 / 3 shared
Takeda, K.
2 / 3 shared
Kaneko, S.
1 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Miura, E.
  • Faudree, Michael
  • Salvia, M.
  • Nishi, Y.
  • Takeda, K.
  • Kaneko, S.
OrganizationsLocationPeople

article

A New Strengthening Process for Carbon-Fiber-Reinforced Thermoplastic Polyphenylene Sulfide (CFRTP-PPS) Interlayered Composite by Electron Beam Irradiation to PPS Prior to Lamination Assembly and Hot Press.

  • Miura, E.
  • Sagawa, K.
  • Faudree, Michael
  • Salvia, M.
  • Nishi, Y.
  • Takeda, K.
Abstract

Impact by hailstone, volcanic rock, bird strike, or also dropping tools can cause damage to aircraft materials. For maximum safety, the goal is to increase Charpy impact strength (<i>a</i><sub>uc</sub>) of a carbon-fiber-reinforced thermoplastic polyphenylene sulfide polymer (CFRTP-PPS) composite for potential application to commercial aircraft parts. The layup was three cross-weave CF plies alternating between four PPS plies, [PPS-CF-PPS-CF-PPS-CF-PPS], designated [PPS]<sub>4</sub>[CF]<sub>3</sub>. To strengthen, a new process for CFRP-PPS was employed applying homogeneous low voltage electron beam irradiation (HLEBI) to both sides of PPS plies prior to lamination assembly with untreated CF, followed by hot press under 4.0 MPa at 573 K for 8 min. Experimental results showed a 5 kGy HLEBI dose was at or near optimum, increasing <i>a</i><sub>uc</sub> at each accumulative probability, <i>P</i><sub>f</sub>. Optical microscopy of 5 kGy sample showed a reduction in main crack width with significantly reduced CF separation and pull-out; while, scanning electron microscopy (SEM) and electron dispersive X-ray (EDS) mapping showed PPS adhering to CF. Electron spin resonance (ESR) of a 5 kGy sample indicated lengthening of PPS chains as evidenced by a reduction in dangling bond peak. It Is assumed that 5 kGy HLEBI creates strong bonds at the interface while strengthening the PPS bulk. A model is proposed to illustrate the possible strengthening mechanism.

Topics
  • impedance spectroscopy
  • Carbon
  • scanning electron microscopy
  • crack
  • strength
  • composite
  • electron spin resonance spectroscopy
  • Energy-dispersive X-ray spectroscopy
  • optical microscopy
  • thermoplastic