People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aouad, Georges
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Managing the Heat Release of Calcium Sulfoaluminate Cement by Modifying the Ye’elimite Contentcitations
- 2023Development of Flash-Calcined Sediment and Blast Furnace Slag Ternary Binderscitations
- 2023Portland/Sulfoaluminate Cement Blends for the Control of Early Age Hydration and Yield Stresscitations
- 2022The Use of Callovo-Oxfordian Argillite as a Raw Material for Portland Cement Clinker Productioncitations
- 2022Recycling of Flash-Calcined Dredged Sediment for Concrete 3D Printingcitations
- 2022Influence of the mix composition on the thixotropy of 3D printable mortarscitations
- 2020The use of calcium sulfo-aluminate cement as an alternative to Portland Cement for the recycling of municipal solid waste incineration bottom ash in mortarcitations
Places of action
Organizations | Location | People |
---|
article
Managing the Heat Release of Calcium Sulfoaluminate Cement by Modifying the Ye’elimite Content
Abstract
<jats:p>Nowadays, calcium sulfoaluminate cement (CSA) is garnering a large amount of attention worldwide and is being promoted as a sustainable alternative to Portland cement for specific applications. This study aimed to control the heat release of CSA cement paste by choosing the appropriate composition. For this purpose, different calcium sulfoaluminate clinkers with up to 75 wt. % of ye’elimite were synthetized. Then, a reactivity study on the synthesized clinkers was conducted while varying the amount of gypsum added. The heat of hydration was measured by isothermal calorimetry. The influence of the ye’elimite content on the heat release and on the compressive strength was investigated. According to the findings, the amount of ye’elimite in the cement has a direct relationship with the heat release. The heat release as well as the mechanical performance increase with the increase in the ye’elimite content in the CSA cement. An equation allowing the prediction of the total heat release after 24 h is provided. Such data can be of particular interest to consultants aiming at the reduction of thermal cracking in massive concrete.</jats:p>