People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johanes, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023An Investigation into the Potential of Turning Induced Deformation Technique for Developing Porous Magnesium and Mg-SiO2 Nanocompositecitations
- 2019Fe3O4 Nanoparticle-Reinforced Magnesium Nanocomposites Processed via Disintegrated Melt Deposition and Turning-Induced Deformation Techniquescitations
Places of action
Organizations | Location | People |
---|
article
An Investigation into the Potential of Turning Induced Deformation Technique for Developing Porous Magnesium and Mg-SiO2 Nanocomposite
Abstract
<jats:p>A new and novel method of synthesising porous Mg materials has been explored utilising a variant of a processing method previously used for the synthesis of dense Mg materials, namely the turning-induced deformation (TID) method combined with sintering. It was found that the Mg materials synthesised possessed comparable properties to previously-synthesised porous Mg materials in the literature while subsequent sintering resulted in a more consistent mechanical response, with microwave sintering showing the most promise. The materials were also found to possess mechanical response within the range of the human cancellous bone, and when reinforced with biocompatible silica nanoparticles, presented the most optimal combination of mechanical properties for potential use as biodegradable implants due to most similarity with cancellous bone properties.</jats:p>