Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pantić, Vladan

  • Google
  • 2
  • 8
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Environmentally Friendly Masonry Mortar Blended with Fly Ash, Corn Cob Ash or Ceramic Waste Powder7citations
  • 2023Effects of Grinding Methods and Water-to-Binder Ratio on the Properties of Cement Mortars Blended with Biomass Ash and Ceramic Powder8citations

Places of action

Chart of shared publication
Radonjanin, Vlastimir
2 / 3 shared
Lukic, Ivan
2 / 2 shared
Malešev, Mirjana
2 / 3 shared
Šupić, Slobodan
2 / 2 shared
Ognjanović, Miloš
1 / 14 shared
Broćeta, Gordana
1 / 2 shared
Vučinić-Vasić, Milica
1 / 2 shared
Nemes, Tomas
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Radonjanin, Vlastimir
  • Lukic, Ivan
  • Malešev, Mirjana
  • Šupić, Slobodan
  • Ognjanović, Miloš
  • Broćeta, Gordana
  • Vučinić-Vasić, Milica
  • Nemes, Tomas
OrganizationsLocationPeople

article

Effects of Grinding Methods and Water-to-Binder Ratio on the Properties of Cement Mortars Blended with Biomass Ash and Ceramic Powder

  • Vučinić-Vasić, Milica
  • Radonjanin, Vlastimir
  • Lukic, Ivan
  • Malešev, Mirjana
  • Pantić, Vladan
  • Nemes, Tomas
  • Šupić, Slobodan
Abstract

<jats:p>To combat environmental challenges—such as the depletion of natural resources and a high carbon footprint—and contribute to the effort of achieving zero-waste technology and sustainable development, the use of agricultural and industrial wastes in the cement industry has created a research interest. This study explores the potential of two types of harvest residue ash (HRA) and three types of ceramic waste (CP) as supplementary cementitious materials (SCMs) through: (1) the characterization of raw materials and (2) examining the physical properties and mechanical performance of cement-based mortar samples prepared with 10%, 30% and 50%wt of the selected SCMs ground into powder form as cement replacement. Two main variables were the water-to-binder ratio (w/b) and the effect of different grinding procedures. Experimental results demonstrated that flexural and compressive strengths were not significantly impaired by SCM additions of up to 50%, but higher replacement levels led to an increased permeability and higher capillary water absorption due to the dilution effect. Also, a lower w/b was shown to effectively reduce the porosity of mortar and increase its mechanical properties, allowing for higher shares of SCMs to be utilized. This study verifies the technical feasibility of cob corn ash and ceramic powder application as SCMs in mortar formulations, further promoting the practice of incorporating industrial and agricultural by-products in greener cementitious composites.</jats:p>

Topics
  • Carbon
  • grinding
  • strength
  • composite
  • cement
  • permeability
  • porosity
  • ceramic