People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kotous, Jakub
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Effect of Cu alloying on mechanical properties of medium-c steel after long-time tempering at 500 °Ccitations
- 2023Effect of Double-Step and Strain-Assisted Tempering on Properties of Medium-Carbon Steelcitations
- 2023Evolution of microstructure and embrittlement during the tempering process in SiCrCu medium-carbon steels ; Razvoj mikrostrukture in krhkosti srednje ogljičnega jekla vrste SiCrCu med njegovim postopkom popuščanjacitations
- 2022Enhanced Spring Steel’s Strength Using Strain Assisted Temperingcitations
- 2021Effects of Silicon, Chromium, and Copper on Kinetic Parameters of Precipitation during Tempering of Medium Carbon Steelscitations
- 2021Effect of 1.5 wt% Copper Addition and Various Contents of Silicon on Mechanical Properties of 1.7102 Medium Carbon Steelcitations
- 2021New approach to heat treatment of spring steelcitations
- 2020Design and optimization of a closed die forging of nickel-based superalloy turbine blade
- 2020Optimization of workability technological testing for open-die forgingcitations
- 2017Structure Refinement of Spring Steel 51Crv4 after Accelerated Spheroidisationcitations
Places of action
Organizations | Location | People |
---|
article
Effect of Double-Step and Strain-Assisted Tempering on Properties of Medium-Carbon Steel
Abstract
<jats:p>The present work aimed to study the properties of medium-carbon steel during tempering treatment and to present the strength increase of medium-carbon spring steels by strain-assisted tempering (SAT). The effect of double-step tempering and double-step tempering with rotary swaging, also known as SAT, on the mechanical properties and microstructure was investigated. The main goal was to achieve a further enhancement of the strength of medium-carbon steels using SAT treatment. The microstructure consists of tempered martensite with transition carbides in both cases. The yield strength of the DT sample is 1656 MPa, while that of the SAT sample is about 400 MPa higher. On the contrary, plastic properties such as the elongation and reduction in area have lower values after SAT processing, about 3% and 7%, respectively, compared to the DT treatment. Grain boundary strengthening from low-angle grain boundaries can be attributed to the increase in strength. Based on X-ray diffraction analysis, a lower dislocation strengthening contribution was determined for the SAT sample compared to the double-step tempered sample.</jats:p>