Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ataya, Sabbah

  • Google
  • 7
  • 26
  • 191

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Influence of washing with sodium lauryl sulphate (SLS) surfactant on different properties of ramie fibres7citations
  • 2024Multi-Response Optimization of Electrochemical Machining Parameters for Inconel 718 via RSM and MOGA-ANN6citations
  • 2023Additively Manufactured Parts from AA2011-T6 Large-Diameter Feedstocks Using Friction Stir Deposition8citations
  • 2023Reduced Slit Rolling Power in Rebar Steel Productioncitations
  • 2022Wear Characteristics of Mg Alloy AZ91 Reinforced with Oriented Short Carbon Fibers12citations
  • 2021Grain Structure, Crystallographic Texture, and Hardening Behavior of Dissimilar Friction Stir Welded AA5083-O and AA5754-H1434citations
  • 2017Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling124citations

Places of action

Chart of shared publication
Santulli, Carlo
1 / 28 shared
Tadepalli, Srinivas
1 / 1 shared
Murugesan, Thulasi Mani
1 / 2 shared
Palanisamy, Sivasubramanian
1 / 12 shared
Palaniappan, Murugesan
1 / 4 shared
Khan, Rashid
2 / 3 shared
Joardar, Hillol
1 / 3 shared
Saha, Subhadeep
1 / 3 shared
Mondal, Arpan Kumar
1 / 1 shared
Alsaleh, Naser
4 / 9 shared
Cep, Robert
1 / 5 shared
Habba, Mohamed
1 / 1 shared
Ahmed, Mohamed
1 / 3 shared
Latief, Fahamsyah
1 / 1 shared
Abdul-Latif, Akrum
1 / 7 shared
El-Sayed Seleman, Mohamed
1 / 1 shared
Hassan, Ahmed
1 / 5 shared
Essa, Khamis
1 / 46 shared
Elgammal, Islam
1 / 1 shared
Hajlaoui, Khalil
1 / 2 shared
Latief, Fahamsyah H.
1 / 2 shared
Habba, Mohamed I. A.
1 / 2 shared
Soliman, Ahmed M.
1 / 3 shared
Allam, Tarek
1 / 6 shared
Silberschmidt, Vadim V.
1 / 524 shared
Abdel-Wahab, Adel A.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2017

Co-Authors (by relevance)

  • Santulli, Carlo
  • Tadepalli, Srinivas
  • Murugesan, Thulasi Mani
  • Palanisamy, Sivasubramanian
  • Palaniappan, Murugesan
  • Khan, Rashid
  • Joardar, Hillol
  • Saha, Subhadeep
  • Mondal, Arpan Kumar
  • Alsaleh, Naser
  • Cep, Robert
  • Habba, Mohamed
  • Ahmed, Mohamed
  • Latief, Fahamsyah
  • Abdul-Latif, Akrum
  • El-Sayed Seleman, Mohamed
  • Hassan, Ahmed
  • Essa, Khamis
  • Elgammal, Islam
  • Hajlaoui, Khalil
  • Latief, Fahamsyah H.
  • Habba, Mohamed I. A.
  • Soliman, Ahmed M.
  • Allam, Tarek
  • Silberschmidt, Vadim V.
  • Abdel-Wahab, Adel A.
OrganizationsLocationPeople

article

Reduced Slit Rolling Power in Rebar Steel Production

  • Essa, Khamis
  • Elgammal, Islam
  • Ataya, Sabbah
  • Khan, Rashid
Abstract

The rolling process of rebar steel production is one of the well established manufacturing processes; however, it should be subjected to revision and redesign for productivity enhancement and power reduction throughout the slit rolling process. In this work, slitting passes are extensively reviewed and modified for the attainment of better rolling stability and reduction in power consumption. The study has been applied for grade B400B-R Egyptian rebar steel, which is equivalent to steel grade ASTM A615M, Grade 40. Traditionally, the rolled strip in the rolling pass is edged before implementing a slitting pass using grooved rolls; this produces a single barreled strip. This single barrel form causes instability in the next slitting stand on the pressing by the slitting roll knife. Multiple industrial trials are attempted to achieve the deformation of the edging stand using a grooveless roll. As a result, a double barreled slab is produced. In parallel, finite element simulations of the edging pass are performed using grooved and grooveless rolls, and similar slab geometry with single and double barreled form are produced. In addition, further finite element simulations of the slitting stand are execute using idealized single barreled strips. The power calculated by the FE simulations of the single barreled strip is (245 kW), which is in acceptable agreement with the experimental observations in the industrial process (216 kW). This result validates the FE modeling parameters such as material model and boundary conditions. The FE modeling is extended to the slit rolling stand of a double barreled strip, which was previously produced by the grooveless edging rolls. It is found that the power consumption is (165 kW) 12% lower than the power consumed (185 kW) for slitting the single barreled strip.

Topics
  • impedance spectroscopy
  • simulation
  • steel
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy