Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mezinskis, Gundars

  • Google
  • 1
  • 5
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Physical, Thermal, and Chemical Properties of Fly Ash Cenospheres Obtained from Different Sources24citations

Places of action

Chart of shared publication
Abramovskis, Vitalijs
1 / 3 shared
Ozolins, Jurijs
1 / 5 shared
Singh, Ashish Kumar
1 / 2 shared
Shishkin, Andrei
1 / 12 shared
Zālīte, Ilmārs
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Abramovskis, Vitalijs
  • Ozolins, Jurijs
  • Singh, Ashish Kumar
  • Shishkin, Andrei
  • Zālīte, Ilmārs
OrganizationsLocationPeople

article

Physical, Thermal, and Chemical Properties of Fly Ash Cenospheres Obtained from Different Sources

  • Abramovskis, Vitalijs
  • Ozolins, Jurijs
  • Mezinskis, Gundars
  • Singh, Ashish Kumar
  • Shishkin, Andrei
  • Zālīte, Ilmārs
Abstract

<jats:p>Cenospheres are hollow particles in fly ash, a by-product of coal burning, and are widely used as a reinforcement when developing low-density composites called syntactic foams. This study has investigated the physical, chemical, and thermal properties of cenospheres obtained from three different sources, designated as CS1, CS2, and CS3, for the development of syntactic foams. Cenospheres with particle sizes ranging from 40 to 500 μm were studied. Different particle distribution by size was observed, and the most uniform distribution of CS particles was in the case of CS2: above 74% with dimensions from 100 to 150 μm. The CS bulk had a similar density for all samples and amounted to around 0.4 g·cm−3, with a particle shell material density of 2.1 g·cm−3. Post-heat-treatment samples showed the development of a SiO2 phase in the cenospheres, which was not present in the as-received product. CS3 had the highest quantity of Si compared to the other two, showing the difference in source quality. Energy-dispersive X-ray spectrometry and a chemical analysis of the CS revealed that the main components of the studied CS were SiO2 and Al2O3. In the case of CS1 and CS2, the sum of these components was on average from 93 to 95%. In the case of CS3, the sum of SiO2 and Al2O3 did not exceed 86%, and Fe2O3 and K2O were present in appreciable quantities in CS3. Cenospheres CS1 and CS2 did not sinter during heat treatment up to 1200 °C, while sample CS3 was already subjected to sintering at 1100 °C because of the presence of a quartz phase, Fe2O3 and K2O. For the application of a metallic layer and subsequent consolidation via spark plasma sintering, CS2 can be deemed the most physically, thermally, and chemically suitable.</jats:p>

Topics
  • density
  • phase
  • composite
  • spectrometry
  • particle distribution
  • sintering