Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liu, Sijia

  • Google
  • 1
  • 4
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of Ultrasonic Shot Peening and Laser Shock Peening on the Microstructure and Microhardness of IN738LC Alloys13citations

Places of action

Chart of shared publication
Bae, Seongguk
1 / 2 shared
Kim, Youngdae
1 / 1 shared
Jung, Jinesung
1 / 1 shared
Shin, Keesam
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Bae, Seongguk
  • Kim, Youngdae
  • Jung, Jinesung
  • Shin, Keesam
OrganizationsLocationPeople

article

Effect of Ultrasonic Shot Peening and Laser Shock Peening on the Microstructure and Microhardness of IN738LC Alloys

  • Bae, Seongguk
  • Liu, Sijia
  • Kim, Youngdae
  • Jung, Jinesung
  • Shin, Keesam
Abstract

IN738LC is a conventional-cast Ni-based superalloy intended for power generation and aerospace applications. Typically, ultrasonic shot peening (USP) and laser shock peening (LSP) are utilized to enhance cracking, creep, and fatigue resistance. In this study, the optimal process parameters for USP and LSP were established by observing the microstructure and measuring the microhardness of the near-surface region of IN738LC alloys. The LSP impact region (modification depth) was approximately 2500 mu m, which was much higher than the USP impact depth of 600 mu m. The observation of the microstructural modification and resulting strengthening mechanism revealed that the build-up of dislocations upon peening with plastic deformation was crucial for alloy strengthening in both methods. In contrast, significant strengthening via gamma ' shearing was observed only in the USP-treated alloys.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • polymer
  • fatigue
  • dislocation
  • ultrasonic
  • creep
  • superalloy