People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zehetbauer, Michael J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Effect of V content on the microstructure and mechanical properties of HPT nanostructured CoCrFeMnNiV x high entropy alloys
- 2023Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?citations
- 2021Enhancing the Mechanical Properties of Biodegradable Mg Alloys Processed by Warm HPT and Thermal Treatmentscitations
- 2020The effects of severe plastic deformation and/or thermal treatment on the mechanical properties of biodegradable mg-alloyscitations
- 2020Anomalous Evolution of Strength and Microstructure of High-Entropy Alloy CoCrFeNiMn after High-Pressure Torsion at 300 and 77 Kcitations
- 2019Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatmentcitations
- 2019Characterization of strain bursts in high density polyethylene by means of a novel nano creep testcitations
- 2016Producing bulk ultrafine-grained materials by severe plastic deformation: ten years latercitations
Places of action
Organizations | Location | People |
---|
article
Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?
Abstract
<jats:p>The effects of severe plastic deformation (SPD) by means of high-pressure torsion (HPT) on the structural properties of the two iron-based metallic glasses Fe73.9Cu1Nb3Si15.5B6.6 and Fe81.2Co4Si0.5B9.5P4Cu0.8 have been investigated and compared. While for Fe73.9Cu1Nb3Si15.5B6.6, HPT processing allows us to extend the known consolidation and deformation ranges, HPT processing of Fe81.2Co4Si0.5B9.5P4Cu0.8 for the first time ever achieves consolidation and deformation with a minimum number of cracks. Using numerous analyses such as X-ray diffraction, dynamic mechanical analyses, and differential scanning calorimetry, as well as optical and transmission electron microscopy, clearly reveals that Fe81.2Co4Si0.5B9.5P4Cu0.8 exhibits HPT-induced crystallization phenomena, while Fe73.9Cu1Nb3Si15.5B6.6 does not crystallize even at the highest HPT-deformation degrees applied. The reasons for these findings are discussed in terms of differences in the deformation energies expended, and the number and composition of the individual crystalline phases formed. The results appear promising for obtaining improved magnetic properties of glassy alloys without additional thermal treatment.</jats:p>