Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bychkova, Marina

  • Google
  • 1
  • 4
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023The Effect of Copper on the Microstructure, Wear and Corrosion Resistance of CoCrCuFeNi High-Entropy Alloys Manufactured by Powder Metallurgy27citations

Places of action

Chart of shared publication
Antonyuk, Maria
1 / 1 shared
Fedotov, Alexander
1 / 2 shared
Loginov, Pavel
1 / 7 shared
Levashov, Evgeny
1 / 11 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Antonyuk, Maria
  • Fedotov, Alexander
  • Loginov, Pavel
  • Levashov, Evgeny
OrganizationsLocationPeople

article

The Effect of Copper on the Microstructure, Wear and Corrosion Resistance of CoCrCuFeNi High-Entropy Alloys Manufactured by Powder Metallurgy

  • Antonyuk, Maria
  • Fedotov, Alexander
  • Bychkova, Marina
  • Loginov, Pavel
  • Levashov, Evgeny
Abstract

<jats:p>This paper focuses on the microstructure, phase composition, mechanical, tribological and corrosion properties of high-entropy alloys (HEAs) in the CoCrCuFeNi system depending on copper content, which was varied from 0 to 20 at. % with an increment of 5%. CoCrCuFeNi alloys were manufactured by powder metallurgy methods: mechanical alloying and hot pressing of element mixtures. The solubility limit of copper in CoCrFeNi solid solution was found to be 9 at. %. Segregation of irregularly shaped copper grains sized 1–30 μm is observed at concentrations above this solubility limit. As copper concentration increases, the phase composition of CoCrCuFeNi alloys changes from the single phase based on FCC1 solid solution (Cu = 0–5 at. %) to the dual-phase FCC1 + FCC2 alloy (Cu = 10–20 at. %), where FCC1 is the main phase and FCC2 is the secondary copper-rich phase. Tribological tests have shown that doping the CoCrFeNi alloy with copper increased wear resistance by 23% due to solid solution hardening. As copper content rises above 20%, the content of the secondary FCC2 phase increases, while wear resistance and alloy hardness decline. An analysis of wear tracks and wear products has shown that abrasion of CoCrCuFeNi alloys occurs via the abrasive-oxidative wear mechanism. The corrosion tests of CoCrCuFeNi HEAs in 3.5% NaCl solution had demonstrated that doping the alloy with copper at low concentrations (5–10%) leads to decreasing of corrosion resistance, possibly due to the formation of undesirable oxide Cu2O along with protective Cr2O3. At high copper concentrations (15–20%) galvanic corrosion is suppressed due to coarsening of FCC2 grains and thus decreasing the specific contact surface area between the cathode (FCC2) and the anode (FCC1).</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • phase
  • wear resistance
  • hardness
  • copper
  • galvanic corrosion
  • hot pressing