People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Balos, Sebastian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Effects of tool rotation and welding speeds on toughness and tensile strength of aa 6060 welded by FSW
- 2023Testing and Analysis of Uniaxial Mechanical Fatigue, Charpy Impact Fracture Energy and Microhardness of Two Low-Carbon Steelscitations
- 2022Influence of tool and welding parameters on the risk of wormhole defect in aluminum magnesium alloy welded by bobbin tool FSWcitations
- 2022Influence of Tool and Welding Parameters on the Risk of Wormhole Defect in Aluminum Magnesium Alloy Welded by Bobbin Tool FSWcitations
- 2021Influence of tool geometry and process parameters on the properties of friction stir spot welded multiple (Aa 5754 h111) aluminium sheetscitations
- 2021In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot weldingcitations
- 2021In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot weldingcitations
- 2021In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot weldingcitations
- 2021Influence of tool geometry and process parameters on the properties of friction stir spot welded multiple (AA 5754 H111) aluminium sheetscitations
- 2021Influence of tool geometry and process parameters on the properties of friction stir spot welded multiple (AA 5754 H111) aluminium sheetscitations
- 2021The Effect of Water Concentration in Ethyl Alcohol on the Environmentally Assisted Embrittlement of Austempered Ductile Ironscitations
- 2021Effect of the degree of conversion on mechanical properties and monomer elution from self-, dual- and light-cured core compositescitations
- 2020Review on adhesives and surface treatments for structural applications : recent developments on sustainability and implementation for metal and composite substratescitations
- 2020An experimental study on lap joining of multiple sheets of aluminium alloy (AA 5754) using friction stir spot weldingcitations
- 2020An experimental study on lap joining of multiple sheets of aluminium alloy (AA 5754) using friction stir spot weldingcitations
- 2019Suppressing the use of critical raw materials in joining of AISI 304 stainless steel using activated tungsten inert gas weldingcitations
- 2019Suppressing the use of critical raw materials in joining of AISI 304 stainless steel using activated tungsten inert gas weldingcitations
Places of action
Organizations | Location | People |
---|
article
Testing and Analysis of Uniaxial Mechanical Fatigue, Charpy Impact Fracture Energy and Microhardness of Two Low-Carbon Steels
Abstract
<jats:p>The paper presents and analyzes the results of experimental tests performed on two non-alloy low carbon steels (1.1141 and 1.0122) in cases of their exposure to impact fracture energy and uniaxial high cyclic mechanical stress-controlled fatigue. The experimental results provide insight into the changes in the Charpy impact fracture energy of the V-notched test specimen that occur as a result of temperature changes. The experimental results also provide insight into the mechanical response of the tested materials to mechanical uniaxial high-cycle fatigue at room temperature in an air atmosphere and at different applied stress ratios. Material fatigue tests refer to symmetric (R = −1), asymmetric (R = −0.5) and pulsating tensile (R = 0) cycles. The test results are shown in the S–N diagrams and refer to the highest applied stresses in relation to the number of failures at a given stress ratio. Using the modified staircase method, the fatigue limit (endurance limit) was calculated for both tested materials at each prescribed stress ratio. For both tested steel alloys, and at prescribed stress ratios, the fatigue limit levels (σ_f) are shown as follows: for steel C15E+C (1.1141)→σf250.8R=−1; 345.4R=−0.5; 527R=0MPa; and for steel S235JRC+C (1.0122)→ σf[202R=−1; 310R=−0.5; 462R=0]MPa. All uniaxial fatigue tests were performed on unnotched, smooth, highly-polished specimens. The microhardness of both materials was also tested.</jats:p>